-    ANDALUSITE     -    Al2SiO5

Experimental structure from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  58  Pnnm 
Lattice parameters (Å):  7.7930  7.8974  5.5558 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  58  Pnnm 
Lattice parameters (Å):  7.7930  7.8974  5.5558 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  32 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Al:  0.0000  0.0000  0.2419 
Al:  0.3716  0.1395  0.5000 
Si:  0.2449  0.2541  0.0000 
O:  0.4277  0.3626  0.5000 
O:  0.4210  0.3674  0.0000 
O:  0.1019  0.4013  0.0000 
O:  0.2319  0.1368  0.2406 
Al:  0.6284  0.8605  0.5000 
Si:  0.7551  0.7459  0.0000 
O:  0.5723  0.6374  0.5000 
O:  0.5790  0.6326  0.0000 
O:  0.8981  0.5987  0.0000 
O:  0.7681  0.8632  0.2406 
Al:  0.5000  0.5000  0.2581 
Al:  0.1284  0.6395  0.0000 
Si:  0.2551  0.7541  0.5000 
O:  0.0723  0.8626  0.0000 
O:  0.0790  0.8674  0.5000 
O:  0.3981  0.9013  0.5000 
O:  0.2681  0.6368  0.2594 
Al:  0.8716  0.3605  0.0000 
Si:  0.7449  0.2459  0.5000 
O:  0.9277  0.1374  0.0000 
O:  0.9210  0.1326  0.5000 
O:  0.6019  0.0987  0.5000 
O:  0.7319  0.3632  0.2594 
Al:  0.0000  0.0000  0.7581 
O:  0.7681  0.8632  0.7594 
O:  0.2319  0.1368  0.7594 
Al:  0.5000  0.5000  0.7419 
O:  0.7319  0.3632  0.7406 
O:  0.2681  0.6368  0.7406 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B3g
126
126
126
126
5
B2g
151
151
151
151
3.780e+37
0.2
5.197e+37
0.3
8.977e+37
0.4
6
B3g
160
160
160
160
1.986e+36
0.0
2.731e+36
0.0
4.717e+36
0.0
7
B1u
177
177
177
177
8
B2u
182
182
185
182
9
B3u
185
185
185
185
10
B2g
185
199
186
185
3.242e+37
0.2
4.458e+37
0.2
7.700e+37
0.4
11
B3g
205
205
205
205
8.700e+37
0.4
1.196e+38
0.6
2.066e+38
1.0
12
Au
214
214
214
214
13
Au
215
215
215
215
14
B2u
232
232
232
232
15
A1g
236
236
236
236
3.451e+38
1.7
1.561e+38
0.8
5.013e+38
2.4
16
B3u
241
241
241
241
17
B2g
249
249
249
249
6.714e+36
0.0
9.232e+36
0.0
1.595e+37
0.1
18
B3u
274
278
274
274
19
B1g
278
280
278
278
7.311e+37
0.4
1.005e+38
0.5
1.736e+38
0.8
20
B1u
280
282
280
281
21
A1g
282
288
282
282
1.103e+40
53.4
9.647e+37
0.5
1.113e+40
53.9
22
Au
288
292
288
288
23
B2g
292
295
292
292
8.339e+36
0.0
1.147e+37
0.1
1.981e+37
0.1
24
B2u
295
297
297
295
25
B1g
297
304
300
297
6.680e+37
0.3
9.185e+37
0.4
1.586e+38
0.8
26
B3g
317
317
317
317
2.368e+38
1.1
3.256e+38
1.6
5.624e+38
2.7
27
A1g
318
318
318
318
9.109e+39
44.1
4.782e+37
0.2
9.157e+39
44.3
28
B1g
327
327
327
327
4.330e+38
2.1
5.954e+38
2.9
1.028e+39
5.0
29
B3u
336
337
336
336
30
B2u
337
337
341
337
31
Au
341
341
349
341
32
B1u
349
349
349
349
33
A1g
352
352
352
352
7.043e+39
34.1
1.362e+38
0.7
7.179e+39
34.7
34
B1g
352
352
352
352
35
A1g
363
363
363
363
2.252e+37
0.1
1.489e+37
0.1
3.741e+37
0.2
36
B3g
365
365
365
365
2.216e+37
0.1
3.046e+37
0.1
5.262e+37
0.3
37
B3u
371
378
371
371
38
B2g
380
380
380
380
6.370e+37
0.3
8.758e+37
0.4
1.513e+38
0.7
39
B1g
383
383
383
383
1.223e+37
0.1
1.681e+37
0.1
2.904e+37
0.1
40
B2g
383
383
383
383
1.169e+38
0.6
1.607e+38
0.8
2.776e+38
1.3
41
B3g
389
389
389
389
7.699e+38
3.7
1.059e+39
5.1
1.828e+39
8.8
42
B2u
390
390
390
390
43
B2u
404
404
418
404
44
B3u
418
439
439
418
45
A1g
439
442
442
439
5.296e+38
2.6
3.278e+38
1.6
8.574e+38
4.1
46
Au
442
443
443
442
47
B1u
443
453
453
449
48
B2g
453
458
455
453
5.401e+38
2.6
7.426e+38
3.6
1.283e+39
6.2
49
B1g
458
459
458
458
9.123e+37
0.4
1.254e+38
0.6
2.167e+38
1.0
50
B3g
459
483
459
459
5.248e+37
0.3
7.216e+37
0.3
1.246e+38
0.6
51
B3u
489
495
489
489
52
B2u
495
509
503
495
53
Au
509
515
509
509
54
A1g
515
522
515
515
1.736e+39
8.4
1.120e+38
0.5
1.848e+39
8.9
55
B1g
522
524
522
522
1.683e+38
0.8
2.315e+38
1.1
3.998e+38
1.9
56
B3u
525
526
525
525
57
B1u
526
533
526
535
58
B2u
535
535
535
537
59
Au
537
537
537
549
60
A1g
549
549
549
554
3.479e+38
1.7
8.349e+37
0.4
4.314e+38
2.1
61
B3g
554
554
554
557
2.884e+37
0.1
3.966e+37
0.2
6.851e+37
0.3
62
B1u
557
557
557
566
63
B2g
566
566
566
570
1.141e+36
0.0
1.569e+36
0.0
2.711e+36
0.0
64
B3u
570
570
570
570
65
B1g
570
570
570
588
1.280e+38
0.6
1.760e+38
0.9
3.040e+38
1.5
66
B2u
588
588
590
590
67
A1g
590
590
605
605
2.421e+38
1.2
5.429e+37
0.3
2.964e+38
1.4
68
B2g
605
605
617
617
3.903e+37
0.2
5.367e+37
0.3
9.271e+37
0.4
69
B1g
617
617
617
624
4.369e+37
0.2
6.008e+37
0.3
1.038e+38
0.5
70
B2u
624
624
625
625
71
B3g
625
625
628
626
3.141e+38
1.5
4.319e+38
2.1
7.461e+38
3.6
72
B1u
628
628
652
652
73
Au
652
652
680
662
74
A1g
680
680
683
680
1.855e+39
9.0
9.572e+37
0.5
1.950e+39
9.4
75
B1g
683
683
687
683
2.972e+38
1.4
4.087e+38
2.0
7.059e+38
3.4
76
B3u
687
699
712
687
77
B3u
724
736
724
724
78
B2u
746
746
746
746
79
A1g
773
773
773
773
2.688e+38
1.3
1.716e+38
0.8
4.404e+38
2.1
80
B1g
773
773
773
773
3.400e+37
0.2
4.676e+37
0.2
8.076e+37
0.4
81
B3u
812
824
812
812
82
B2u
824
861
824
824
83
B2u
861
861
863
861
84
B3u
864
867
864
864
85
A1g
867
883
867
867
2.061e+40
99.7
5.713e+37
0.3
2.066e+40
100.0
86
B1u
883
884
883
884
87
B3g
884
892
884
892
2.468e+39
11.9
3.394e+39
16.4
5.862e+39
28.4
88
B1g
892
894
892
894
2.612e+38
1.3
3.591e+38
1.7
6.203e+38
3.0
89
Au
894
894
894
894
90
B2g
894
904
894
904
2.180e+38
1.1
2.997e+38
1.5
5.177e+38
2.5
91
A1g
904
908
904
908
3.427e+39
16.6
1.096e+39
5.3
4.524e+39
21.9
92
B2u
908
918
918
918
93
B3u
918
961
976
976
94
B1g
976
976
1003
1003
1.618e+39
7.8
2.225e+39
10.8
3.843e+39
18.6
95
A1g
1003
1003
1029
1017
4.179e+39
20.2
3.232e+38
1.6
4.502e+39
21.8
96
B1g
1049
1049
1049
1049
6.982e+38
3.4
9.600e+38
4.6
1.658e+39
8.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.