-    DISTHENE     -    Al2SiO5

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  7.7930  7.8974  5.5558 
Angles (°):  90.0  101.1  106.0 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  7.1294  7.8444  5.5753 
Angles (°):  89.7  101.2  106.0 

Cell contents: 

Number of atoms:  32 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Al:  0.3241  0.7039  0.4578 
Al:  0.2963  0.6985  0.9500 
Al:  0.0999  0.3866  0.6405 
Al:  0.1119  0.9170  0.1651 
Si:  0.2959  0.0650  0.7066 
Si:  0.2908  0.3313  0.1894 
O:  0.1119  0.1454  0.1273 
O:  0.1240  0.6877  0.1833 
O:  0.2719  0.4550  0.9564 
O:  0.2801  0.9332  0.9325 
O:  0.1104  0.1544  0.6702 
O:  0.1235  0.6290  0.6379 
O:  0.2791  0.4439  0.4265 
O:  0.2883  0.9467  0.4666 
O:  0.5025  0.2787  0.2458 
O:  0.5033  0.2283  0.7558 
Al:  0.6759  0.2961  0.5422 
Al:  0.7037  0.3015  0.0500 
Al:  0.9001  0.6134  0.3595 
Al:  0.8881  0.0830  0.8349 
Si:  0.7041  0.9350  0.2934 
Si:  0.7092  0.6687  0.8106 
O:  0.8881  0.8546  0.8727 
O:  0.8760  0.3123  0.8167 
O:  0.7281  0.5450  0.0436 
O:  0.7199  0.0668  0.0675 
O:  0.8896  0.8456  0.3298 
O:  0.8765  0.3710  0.3621 
O:  0.7209  0.5561  0.5735 
O:  0.7117  0.0533  0.5334 
O:  0.4975  0.7213  0.7542 
O:  0.4967  0.7717  0.2442 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
163
163
163
163
4.194e+37
0.4
3.764e+37
0.3
7.958e+37
0.7
5
Ag
196
196
196
196
1.619e+38
1.4
5.897e+37
0.5
2.208e+38
2.0
6
Ag
215
215
215
215
2.972e+38
2.7
3.601e+37
0.3
3.333e+38
3.0
7
Au
218
218
223
218
8
Ag
230
230
230
230
1.480e+38
1.3
5.670e+37
0.5
2.047e+38
1.8
9
Au
232
232
232
233
10
Ag
239
239
239
239
3.533e+37
0.3
2.051e+37
0.2
5.584e+37
0.5
11
Au
241
242
241
241
12
Au
261
262
263
262
13
Ag
263
263
263
263
7.291e+38
6.5
3.658e+37
0.3
7.656e+38
6.8
14
Ag
274
274
274
274
4.156e+38
3.7
2.076e+37
0.2
4.364e+38
3.9
15
Au
277
277
279
277
16
Ag
279
279
279
279
7.454e+37
0.7
7.444e+37
0.7
1.490e+38
1.3
17
Ag
281
281
281
281
3.289e+39
29.4
7.271e+37
0.6
3.362e+39
30.0
18
Au
291
295
291
292
19
Ag
295
295
295
295
3.936e+38
3.5
2.354e+38
2.1
6.290e+38
5.6
20
Au
300
301
302
304
21
Ag
306
306
306
306
2.135e+39
19.1
1.082e+38
1.0
2.243e+39
20.0
22
Au
311
311
313
317
23
Ag
322
322
322
322
6.401e+37
0.6
7.934e+37
0.7
1.433e+38
1.3
24
Au
327
327
327
328
25
Au
337
338
338
338
26
Ag
339
339
339
339
1.638e+39
14.6
1.109e+38
1.0
1.749e+39
15.6
27
Ag
349
349
349
349
6.685e+38
6.0
4.139e+38
3.7
1.082e+39
9.7
28
Ag
350
350
350
350
5.116e+38
4.6
6.247e+38
5.6
1.136e+39
10.2
29
Au
356
356
356
356
30
Au
358
363
358
358
31
Ag
363
366
363
363
4.151e+39
37.1
1.730e+38
1.5
4.324e+39
38.6
32
Au
367
367
369
368
33
Au
370
371
371
371
34
Ag
376
376
376
376
3.107e+39
27.8
1.077e+38
1.0
3.215e+39
28.7
35
Ag
379
379
379
379
1.745e+39
15.6
1.725e+38
1.5
1.917e+39
17.1
36
Au
384
386
385
386
37
Au
393
395
395
394
38
Ag
395
398
401
395
1.853e+38
1.7
2.388e+38
2.1
4.241e+38
3.8
39
Au
411
411
411
411
40
Ag
411
414
411
412
5.398e+38
4.8
1.742e+38
1.6
7.140e+38
6.4
41
Au
415
416
416
416
42
Ag
416
425
425
416
2.153e+39
19.2
8.231e+37
0.7
2.236e+39
20.0
43
Ag
425
425
426
425
1.953e+39
17.5
4.861e+37
0.4
2.002e+39
17.9
44
Au
428
429
429
429
45
Ag
429
433
430
434
4.433e+38
4.0
1.795e+38
1.6
6.228e+38
5.6
46
Au
434
451
436
454
47
Au
456
459
456
456
48
Ag
459
461
459
459
1.381e+38
1.2
6.495e+37
0.6
2.031e+38
1.8
49
Ag
465
465
465
465
8.596e+39
76.8
2.636e+37
0.2
8.623e+39
77.1
50
Au
467
470
472
472
51
Ag
472
472
474
481
2.865e+39
25.6
7.009e+37
0.6
2.935e+39
26.2
52
Au
482
487
483
493
53
Ag
494
494
494
494
4.086e+38
3.7
2.430e+38
2.2
6.516e+38
5.8
54
Au
495
495
497
500
55
Au
501
501
503
510
56
Au
515
515
515
516
57
Au
516
517
517
517
58
Ag
517
519
523
527
2.227e+38
2.0
1.663e+38
1.5
3.890e+38
3.5
59
Au
534
537
537
534
60
Au
537
540
540
540
61
Ag
540
542
542
542
1.174e+39
10.5
4.125e+38
3.7
1.587e+39
14.2
62
Ag
542
549
555
544
6.638e+38
5.9
3.804e+38
3.4
1.044e+39
9.3
63
Ag
559
559
559
559
3.796e+38
3.4
2.403e+38
2.1
6.199e+38
5.5
64
Au
560
573
569
561
65
Au
573
580
580
580
66
Ag
580
586
580
586
8.478e+38
7.6
1.232e+38
1.1
9.710e+38
8.7
67
Ag
586
591
586
594
2.682e+38
2.4
8.581e+37
0.8
3.540e+38
3.2
68
Au
595
600
600
600
69
Ag
600
606
607
613
1.831e+38
1.6
1.432e+38
1.3
3.263e+38
2.9
70
Ag
613
613
613
613
71
Au
613
623
626
626
1.193e+39
10.7
1.857e+38
1.7
1.379e+39
12.3
72
Ag
626
626
628
628
6.061e+38
5.4
7.774e+38
6.9
1.383e+39
12.4
73
Au
628
637
637
637
74
Ag
637
639
638
638
6.047e+38
5.4
5.593e+38
5.0
1.164e+39
10.4
75
Au
645
654
654
654
76
Ag
654
655
660
654
8.775e+37
0.8
2.993e+37
0.3
1.177e+38
1.1
77
Au
660
672
672
672
78
Ag
672
698
698
693
4.615e+38
4.1
1.253e+38
1.1
5.868e+38
5.2
79
Ag
698
703
698
698
3.086e+38
2.8
1.000e+38
0.9
4.086e+38
3.7
80
Au
704
725
717
714
81
Au
837
838
837
837
82
Au
841
849
849
841
83
Ag
849
855
858
849
6.578e+39
58.8
1.509e+39
13.5
8.086e+39
72.3
84
Ag
858
858
861
858
4.093e+39
36.6
1.667e+39
14.9
5.760e+39
51.5
85
Au
867
869
871
869
86
Au
875
877
876
877
87
Ag
877
896
877
878
1.478e+38
1.3
1.292e+38
1.2
2.770e+38
2.5
88
Ag
900
900
900
900
2.677e+39
23.9
1.161e+38
1.0
2.794e+39
25.0
89
Au
900
907
902
907
90
Ag
907
908
907
909
5.876e+39
52.5
4.091e+38
3.7
6.285e+39
56.2
91
Au
909
912
912
912
92
Ag
912
913
917
923
8.744e+39
78.1
2.446e+39
21.9
1.119e+40
100.0
93
Ag
923
923
923
941
6.841e+39
61.1
1.431e+39
12.8
8.272e+39
73.9
94
Au
942
964
964
964
95
Ag
964
978
975
978
1.410e+39
12.6
5.266e+38
4.7
1.937e+39
17.3
96
Au
983
1017
1052
1027
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.