-    DISTHENE     -    Al2SiO5

Theoretical atomic positions and lattice parameters from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  7.7930  7.8974  5.5558 
Angles (°):  90.0  101.1  106.0 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  7.1262  7.8520  5.5724 
Angles (°):  90.0  101.1  106.0 

Cell contents: 

Number of atoms:  32 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Al:  0.3254  0.7040  0.4582 
Al:  0.2974  0.6989  0.9505 
Al:  0.0998  0.3862  0.6403 
Al:  0.1120  0.9175  0.1649 
Si:  0.2962  0.0649  0.7066 
Si:  0.2910  0.3317  0.1892 
O:  0.1095  0.1468  0.1288 
O:  0.1230  0.6856  0.1812 
O:  0.2747  0.4545  0.9547 
O:  0.2831  0.9354  0.9353 
O:  0.1084  0.1520  0.6669 
O:  0.1219  0.6307  0.6389 
O:  0.2822  0.4453  0.4288 
O:  0.2915  0.9467  0.4659 
O:  0.5008  0.2749  0.2440 
O:  0.5015  0.2312  0.7553 
Al:  0.6746  0.2960  0.5418 
Al:  0.7026  0.3011  0.0495 
Al:  0.9002  0.6138  0.3597 
Al:  0.8880  0.0825  0.8351 
Si:  0.7038  0.9351  0.2934 
Si:  0.7090  0.6683  0.8108 
O:  0.8905  0.8532  0.8712 
O:  0.8770  0.3144  0.8188 
O:  0.7253  0.5455  0.0453 
O:  0.7169  0.0646  0.0647 
O:  0.8916  0.8480  0.3331 
O:  0.8781  0.3693  0.3611 
O:  0.7178  0.5547  0.5712 
O:  0.7085  0.0533  0.5341 
O:  0.4992  0.7251  0.7560 
O:  0.4985  0.7688  0.2447 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
166
166
166
166
5.376e+37
0.4
5.076e+37
0.4
1.045e+38
0.8
5
Ag
200
200
200
200
1.354e+38
1.1
5.913e+37
0.5
1.945e+38
1.5
6
Ag
216
216
216
216
3.715e+38
2.9
2.153e+37
0.2
3.930e+38
3.1
7
Au
221
222
225
222
8
Au
232
232
232
232
9
Ag
232
232
233
233
1.195e+38
0.9
3.839e+37
0.3
1.579e+38
1.2
10
Ag
241
241
241
241
3.275e+37
0.3
1.608e+37
0.1
4.883e+37
0.4
11
Au
243
243
243
243
12
Au
263
264
264
264
13
Ag
265
265
265
265
4.097e+38
3.2
2.392e+37
0.2
4.336e+38
3.4
14
Ag
275
275
275
275
4.085e+38
3.2
1.388e+37
0.1
4.224e+38
3.3
15
Au
278
278
278
278
16
Ag
278
278
281
278
1.499e+38
1.2
9.874e+37
0.8
2.487e+38
2.0
17
Ag
284
284
284
284
3.603e+39
28.4
6.869e+37
0.5
3.672e+39
29.0
18
Au
293
297
293
294
19
Ag
301
301
301
301
4.379e+38
3.5
2.136e+38
1.7
6.515e+38
5.1
20
Au
302
302
303
306
21
Ag
309
309
309
309
2.583e+39
20.4
1.052e+38
0.8
2.688e+39
21.2
22
Au
313
313
314
317
23
Ag
324
324
324
324
7.234e+37
0.6
7.703e+37
0.6
1.494e+38
1.2
24
Au
327
327
328
328
25
Au
337
337
337
337
26
Ag
341
341
341
341
2.526e+39
19.9
1.317e+38
1.0
2.658e+39
21.0
27
Ag
351
351
351
351
5.709e+38
4.5
4.202e+38
3.3
9.910e+38
7.8
28
Ag
353
353
353
353
4.394e+38
3.5
6.489e+38
5.1
1.088e+39
8.6
29
Au
354
354
354
354
30
Au
360
363
360
360
31
Ag
363
365
363
363
3.922e+39
30.9
1.935e+38
1.5
4.116e+39
32.5
32
Au
367
367
368
368
33
Au
368
371
370
369
34
Ag
374
374
374
374
1.753e+39
13.8
2.813e+37
0.2
1.781e+39
14.1
35
Ag
377
377
377
377
5.788e+39
45.7
2.178e+38
1.7
6.006e+39
47.4
36
Au
383
384
384
384
37
Ag
395
395
395
395
1.792e+38
1.4
2.405e+38
1.9
4.197e+38
3.3
38
Au
397
403
403
397
39
Au
410
411
410
410
40
Ag
412
412
412
412
6.235e+38
4.9
1.267e+38
1.0
7.502e+38
5.9
41
Au
412
415
415
414
42
Ag
415
422
424
415
2.454e+39
19.4
1.433e+38
1.1
2.597e+39
20.5
43
Ag
424
424
424
424
1.801e+39
14.2
8.213e+37
0.6
1.883e+39
14.9
44
Au
426
429
428
430
45
Ag
430
430
430
430
1.870e+38
1.5
1.761e+38
1.4
3.632e+38
2.9
46
Au
430
447
430
451
47
Au
454
455
454
454
48
Ag
455
459
455
455
7.711e+38
6.1
6.919e+37
0.5
8.403e+38
6.6
49
Ag
461
461
461
461
1.263e+40
99.7
4.345e+37
0.3
1.267e+40
100.0
50
Au
464
467
469
469
51
Ag
469
469
470
475
1.485e+39
11.7
8.538e+37
0.7
1.571e+39
12.4
52
Au
475
481
478
483
53
Ag
483
483
483
488
6.634e+38
5.2
2.041e+38
1.6
8.675e+38
6.8
54
Au
489
489
492
495
55
Au
497
497
499
504
56
Au
506
511
512
511
57
Ag
512
512
512
512
3.483e+38
2.7
2.080e+38
1.6
5.563e+38
4.4
58
Au
514
515
515
524
59
Au
527
529
529
528
60
Ag
529
534
534
529
1.962e+39
15.5
3.827e+38
3.0
2.344e+39
18.5
61
Au
534
538
538
538
62
Ag
538
541
549
539
6.563e+38
5.2
4.221e+38
3.3
1.078e+39
8.5
63
Ag
552
552
552
552
4.085e+38
3.2
2.362e+38
1.9
6.446e+38
5.1
64
Au
553
563
562
555
65
Au
564
573
573
573
66
Ag
573
579
575
580
1.233e+39
9.7
1.114e+38
0.9
1.345e+39
10.6
67
Ag
580
580
580
585
4.706e+38
3.7
9.120e+37
0.7
5.618e+38
4.4
68
Au
585
595
595
595
69
Ag
595
602
601
605
3.650e+38
2.9
1.561e+38
1.2
5.212e+38
4.1
70
Au
605
609
609
609
71
Ag
609
621
621
621
9.937e+38
7.8
2.093e+38
1.7
1.203e+39
9.5
72
Ag
621
622
627
624
4.945e+38
3.9
4.738e+38
3.7
9.683e+38
7.6
73
Au
627
630
627
627
74
Ag
631
631
631
631
75
Au
632
645
645
645
7.620e+38
6.0
1.035e+39
8.2
1.797e+39
14.2
76
Ag
645
646
650
647
1.481e+38
1.2
5.014e+37
0.4
1.982e+38
1.6
77
Au
650
661
661
661
78
Ag
661
683
683
679
1.426e+38
1.1
1.024e+38
0.8
2.450e+38
1.9
79
Ag
683
689
683
683
3.916e+38
3.1
1.867e+38
1.5
5.783e+38
4.6
80
Au
689
715
702
702
81
Au
826
828
827
826
82
Au
829
837
837
830
83
Ag
837
843
849
837
5.801e+39
45.8
1.681e+39
13.3
7.482e+39
59.0
84
Ag
849
849
849
849
5.092e+39
40.2
1.648e+39
13.0
6.740e+39
53.2
85
Au
857
859
858
858
86
Ag
864
864
864
864
2.384e+38
1.9
2.836e+38
2.2
5.220e+38
4.1
87
Au
865
882
865
867
88
Ag
886
886
886
886
89
Au
886
894
887
894
3.085e+39
24.3
1.430e+38
1.1
3.228e+39
25.5
90
Au
894
896
896
896
91
Ag
896
899
899
899
9.600e+39
75.7
8.283e+37
0.7
9.683e+39
76.4
92
Ag
899
901
902
909
5.282e+39
41.7
2.824e+39
22.3
8.107e+39
64.0
93
Ag
909
909
909
927
6.506e+39
51.3
1.261e+39
9.9
7.766e+39
61.3
94
Au
928
952
952
952
95
Ag
952
965
962
966
1.280e+39
10.1
5.081e+38
4.0
1.788e+39
14.1
96
Au
970
1006
1039
1015
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.