-    STRONTIANITE     -    SrCO3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pmcn 
Lattice parameters (Å):  2.7028  4.4524  3.1893 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  62  Pmcn 
Lattice parameters (Å):  4.9659  8.1797  5.7086 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sr:  0.2500  0.4171  0.7572 
C:  0.2500  0.7592  0.9063 
O:  0.2500  0.9150  0.8948 
O:  0.4725  0.6807  0.9062 
Sr:  0.7500  0.9171  0.7428 
C:  0.7500  0.2592  0.5937 
O:  0.7500  0.4150  0.6052 
O:  0.5275  0.1807  0.5938 
Sr:  0.7500  0.5829  0.2428 
C:  0.7500  0.2408  0.0937 
O:  0.7500  0.0850  0.1052 
O:  0.9725  0.3193  0.0938 
Sr:  0.2500  0.0829  0.2572 
C:  0.2500  0.7408  0.4063 
O:  0.2500  0.5850  0.3948 
O:  0.0275  0.8193  0.4062 
O:  0.5275  0.3193  0.0938 
O:  0.4725  0.8193  0.4062 
O:  0.0275  0.6807  0.9062 
O:  0.9725  0.1807  0.5938 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
A1g
106
106
106
106
7.751e+38
0.8
4.072e+38
0.4
1.182e+39
1.3
5
B2u
113
113
114
113
6
B2g
115
115
115
115
7.840e+38
0.8
1.078e+39
1.2
1.862e+39
2.0
7
Au
121
121
121
121
8
B1g
128
128
128
128
4.331e+38
0.5
5.955e+38
0.6
1.029e+39
1.1
9
B3g
149
149
149
149
2.872e+36
0.0
3.949e+36
0.0
6.821e+36
0.0
10
A1g
150
150
150
150
3.041e+38
0.3
1.554e+38
0.2
4.595e+38
0.5
11
B3u
166
178
166
166
12
B2g
183
183
183
183
2.133e+40
22.9
2.933e+40
31.5
5.067e+40
54.5
13
Au
190
190
190
190
14
B3g
195
195
195
195
2.776e+38
0.3
3.818e+38
0.4
6.594e+38
0.7
15
A1g
203
203
203
203
8.710e+38
0.9
2.861e+38
0.3
1.157e+39
1.2
16
B1u
204
204
204
205
17
B1g
206
206
206
206
2.337e+38
0.3
3.213e+38
0.3
5.549e+38
0.6
18
Au
220
220
220
220
9.262e+38
1.0
1.274e+39
1.4
2.200e+39
2.4
19
Au
220
220
223
220
1.091e+40
11.7
1.500e+40
16.1
2.591e+40
27.9
20
B1u
223
223
231
223
21
B3u
231
231
231
231
22
Ag
231
234
234
231
2.040e+39
2.2
8.385e+38
0.9
2.878e+39
3.1
23
B1u
234
234
238
238
24
B1g
238
238
238
238
5.031e+37
0.1
6.917e+37
0.1
1.195e+38
0.1
25
Au
238
238
239
248
26
B2g
248
248
248
264
2.211e+39
2.4
3.040e+39
3.3
5.252e+39
5.6
27
B3u
264
275
264
275
28
B2g
275
287
275
287
1.716e+38
0.2
2.360e+38
0.3
4.077e+38
0.4
29
Au
287
287
287
287
5.908e+38
0.6
8.123e+38
0.9
1.403e+39
1.5
30
Au
287
289
287
289
4.629e+39
5.0
6.365e+39
6.8
1.099e+40
11.8
31
B2u
289
295
295
295
32
B1g
295
297
297
297
1.211e+39
1.3
1.665e+39
1.8
2.876e+39
3.1
33
B3g
297
300
300
300
2.960e+37
0.0
4.070e+37
0.0
7.029e+37
0.1
34
B2u
300
307
307
305
35
B1u
307
325
325
315
36
A1g
325
333
345
325
1.372e+39
1.5
9.843e+38
1.1
2.356e+39
2.5
37
Au
699
699
699
699
38
B1g
702
702
702
702
3.284e+39
3.5
4.515e+39
4.9
7.799e+39
8.4
39
B3u
703
705
703
703
40
B2g
707
707
707
707
1.007e+38
0.1
1.385e+38
0.1
2.392e+38
0.3
41
A1g
711
711
711
711
5.784e+39
6.2
4.236e+39
4.6
1.002e+40
10.8
42
B2u
718
718
719
718
43
Au
720
720
720
720
6.926e+35
0.0
9.523e+35
0.0
1.645e+36
0.0
44
Au
720
720
720
720
4.612e+37
0.0
6.342e+37
0.1
1.095e+38
0.1
45
B1u
836
836
836
836
46
A1g
836
836
836
857
2.241e+38
0.2
9.944e+36
0.0
2.340e+38
0.3
47
B3g
884
884
884
884
3.020e+36
0.0
4.152e+36
0.0
7.172e+36
0.0
48
B2u
885
885
885
885
49
B3g
1089
1089
1089
1089
8.519e+36
0.0
1.171e+37
0.0
2.023e+37
0.0
50
B2u
1091
1091
1091
1091
51
B1u
1091
1091
1091
1091
52
A1g
1092
1092
1092
1092
9.098e+40
97.8
2.029e+39
2.2
9.301e+40
100.0
53
Au
1414
1414
1414
1414
54
B1g
1435
1435
1435
1435
4.168e+38
0.4
5.732e+38
0.6
9.900e+38
1.1
55
B1u
1465
1465
1465
1465
56
A1g
1465
1465
1465
1465
7.481e+38
0.8
3.818e+38
0.4
1.130e+39
1.2
57
B3u
1469
1475
1469
1469
58
B2u
1475
1486
1486
1475
59
B2g
1486
1578
1580
1486
9.854e+38
1.1
1.355e+39
1.5
2.340e+39
2.5
60
B3g
1580
1580
1587
1580
4.090e+38
0.4
5.623e+38
0.6
9.713e+38
1.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.