-    WOLLASTONITE     -    CaSiO3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  4.1942  3.8737  3.7388 
Angles (°):  90.1  95.2  103.4 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  7.9223  7.3056  7.0841 
Angles (°):  90.1  95.5  103.4 

Cell contents: 

Number of atoms:  30 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ca:  0.2001  0.4234  0.7627 
Ca:  0.2062  0.9305  0.7661 
Ca:  0.5058  0.7508  0.5295 
Si:  0.1864  0.3870  0.2686 
Si:  0.1873  0.9555  0.2687 
Si:  0.3977  0.7228  0.0584 
O:  0.3026  0.4624  0.4635 
O:  0.3016  0.9380  0.4643 
O:  0.5721  0.7673  0.1998 
O:  0.9842  0.3706  0.2609 
O:  0.9838  0.8703  0.2583 
O:  0.4010  0.7249  0.8334 
O:  0.2251  0.1805  0.2286 
O:  0.2746  0.8716  0.0965 
O:  0.2744  0.5131  0.0953 
Ca:  0.7999  0.5766  0.2373 
Ca:  0.7938  0.0695  0.2339 
Ca:  0.4942  0.2492  0.4705 
Si:  0.8136  0.6130  0.7314 
Si:  0.8127  0.0445  0.7313 
Si:  0.6023  0.2772  0.9416 
O:  0.6974  0.5376  0.5365 
O:  0.6984  0.0620  0.5357 
O:  0.4279  0.2327  0.8002 
O:  0.0158  0.6294  0.7391 
O:  0.0162  0.1297  0.7417 
O:  0.5990  0.2751  0.1666 
O:  0.7749  0.8195  0.7714 
O:  0.7254  0.1284  0.9035 
O:  0.7256  0.4869  0.9047 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
83
83
83
83
1.187e+38
0.3
1.540e+38
0.3
2.728e+38
0.6
5
Au
107
107
107
107
5.976e+38
1.3
6.228e+37
0.1
6.599e+38
1.5
6
Au
110
110
110
110
2.423e+38
0.5
1.621e+38
0.4
4.044e+38
0.9
7
Ag
112
112
112
112
8
Ag
117
117
117
117
8.787e+38
2.0
5.840e+38
1.3
1.463e+39
3.2
9
Ag
147
147
147
148
10
Au
148
149
150
151
11
Ag
151
151
151
154
7.292e+38
1.6
2.501e+38
0.6
9.793e+38
2.2
12
Ag
155
155
155
158
13
Ag
166
166
166
166
3.091e+38
0.7
2.307e+38
0.5
5.399e+38
1.2
14
Ag
168
168
168
168
1.425e+39
3.2
9.260e+37
0.2
1.518e+39
3.4
15
Au
168
168
168
169
16
Ag
174
174
174
174
2.741e+38
0.6
4.278e+38
1.0
7.019e+38
1.6
17
Au
185
185
185
185
2.184e+38
0.5
1.462e+38
0.3
3.646e+38
0.8
18
Ag
191
194
191
191
19
Au
201
201
201
201
1.857e+38
0.4
1.007e+38
0.2
2.865e+38
0.6
20
Ag
203
203
203
203
5.601e+38
1.2
2.430e+38
0.5
8.031e+38
1.8
21
Au
216
216
216
217
22
Au
218
218
219
221
23
Ag
236
236
236
236
9.964e+38
2.2
3.590e+38
0.8
1.355e+39
3.0
24
Ag
239
240
243
239
25
Au
246
246
246
246
9.616e+38
2.1
3.174e+38
0.7
1.279e+39
2.8
26
Au
252
258
255
252
27
Ag
258
262
258
258
1.599e+38
0.4
7.724e+37
0.2
2.371e+38
0.5
28
Au
266
268
266
266
29
Ag
268
270
268
268
3.922e+38
0.9
1.593e+38
0.4
5.516e+38
1.2
30
Ag
274
277
275
275
31
Au
278
278
278
278
8.862e+37
0.2
1.213e+38
0.3
2.099e+38
0.5
32
Au
282
289
282
287
33
Ag
293
293
293
293
1.607e+38
0.4
9.074e+37
0.2
2.514e+38
0.6
34
Ag
295
298
296
298
35
Ag
299
299
299
299
4.920e+38
1.1
3.362e+38
0.7
8.282e+38
1.8
36
Au
305
307
310
309
37
Au
317
317
317
318
38
Ag
318
318
318
318
1.113e+39
2.5
6.313e+38
1.4
1.744e+39
3.9
39
Au
319
328
319
330
40
Ag
330
330
330
336
3.608e+39
8.0
2.285e+38
0.5
3.836e+39
8.5
41
Au
336
338
337
340
42
Ag
340
340
340
340
1.362e+39
3.0
1.489e+39
3.3
2.851e+39
6.3
43
Ag
340
342
342
348
44
Au
348
348
348
360
1.731e+39
3.8
1.790e+39
4.0
3.521e+39
7.8
45
Ag
361
362
362
364
46
Au
365
365
365
365
1.038e+39
2.3
1.138e+39
2.5
2.176e+39
4.8
47
Ag
388
389
388
388
48
Au
389
390
389
389
9.361e+38
2.1
1.021e+38
0.2
1.038e+39
2.3
49
Ag
403
406
403
404
50
Au
409
409
409
409
3.197e+39
7.1
3.119e+39
6.9
6.316e+39
14.0
51
Ag
414
414
414
414
52
Au
414
414
415
414
2.691e+39
6.0
1.566e+39
3.5
4.257e+39
9.5
53
Ag
443
443
447
443
54
Au
448
448
448
448
5.793e+38
1.3
1.831e+38
0.4
7.624e+38
1.7
55
Au
448
453
450
451
56
Ag
455
465
466
466
57
Au
467
467
467
467
7.677e+38
1.7
1.006e+39
2.2
1.773e+39
3.9
58
Ag
470
470
470
470
4.273e+38
0.9
4.755e+38
1.1
9.028e+38
2.0
59
Au
473
481
481
476
60
Ag
481
494
494
481
3.808e+38
0.8
2.730e+38
0.6
6.539e+38
1.5
61
Au
494
495
497
494
1.817e+38
0.4
1.247e+38
0.3
3.064e+38
0.7
62
Ag
501
501
502
503
63
Au
503
503
503
503
4.427e+38
1.0
5.335e+38
1.2
9.762e+38
2.2
64
Ag
504
505
550
504
65
Au
551
564
562
552
66
Ag
570
570
570
570
1.119e+39
2.5
1.918e+38
0.4
1.311e+39
2.9
67
Ag
618
618
618
618
2.513e+40
55.8
1.661e+38
0.4
2.529e+40
56.2
68
Au
624
624
624
634
69
Au
670
670
672
670
70
Au
673
673
673
673
1.398e+39
3.1
4.853e+38
1.1
1.883e+39
4.2
71
Ag
674
675
677
675
72
Ag
695
695
695
695
3.286e+38
0.7
4.289e+38
1.0
7.575e+38
1.7
73
Au
872
872
872
872
1.938e+39
4.3
1.475e+38
0.3
2.086e+39
4.6
74
Ag
875
886
875
886
75
Au
886
888
893
887
76
Ag
894
894
894
894
7.511e+37
0.2
1.119e+38
0.2
1.870e+38
0.4
77
Au
914
915
915
915
78
Ag
915
917
937
915
1.913e+38
0.4
2.470e+38
0.5
4.383e+38
1.0
79
Ag
937
945
952
952
80
Au
952
952
978
964
4.417e+40
98.1
8.465e+38
1.9
4.501e+40
100.0
81
Ag
980
980
980
980
2.283e+39
5.1
2.385e+39
5.3
4.668e+39
10.4
82
Au
992
992
992
996
83
Au
996
1003
999
1003
84
Ag
1003
1004
1003
1009
5.686e+38
1.3
4.064e+38
0.9
9.750e+38
2.2
85
Ag
1009
1012
1012
1012
86
Au
1012
1024
1014
1032
1.244e+39
2.8
1.118e+39
2.5
2.362e+39
5.2
87
Au
1032
1032
1032
1041
9.108e+39
20.2
2.525e+39
5.6
1.163e+40
25.8
88
Ag
1042
1042
1044
1044
89
Au
1044
1044
1054
1053
6.912e+38
1.5
4.195e+38
0.9
1.111e+39
2.5
90
Ag
1056
1117
1069
1064
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.