-    BERLINITE     -    AlPO4

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  152  P3_121 
Lattice parameters (Å):  4.9458  4.9458  10.9526 
Angles (°):  90.0  90.0  120.0 

Symmetry (theoretical): 

Space group:  152  P3_121 
Lattice parameters (Å):  4.8697  4.8697  10.7944 
Angles (°):  90.0  90.0  120.0 

Cell contents: 

Number of atoms:  18 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Al:  0.4631  0.0000  0.3333 
P:  0.4623  0.0000  0.8333 
O:  0.4163  0.2967  0.3952 
O:  0.4120  0.2637  0.8823 
Al:  0.5369  0.5369  0.0000 
P:  0.5377  0.5377  0.5000 
O:  0.8804  0.5837  0.0619 
O:  0.8518  0.5880  0.5490 
Al:  0.0000  0.4631  0.6667 
P:  0.0000  0.4623  0.1667 
O:  0.2967  0.4163  0.6048 
O:  0.2637  0.4120  0.1177 
O:  0.7033  0.1196  0.7286 
O:  0.7363  0.1482  0.2156 
O:  0.1196  0.7033  0.2714 
O:  0.1482  0.7363  0.7844 
O:  0.5837  0.8804  0.9381 
O:  0.5880  0.8518  0.4510 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
A2
46
46
46
46
5
E
108
108
108
108
3.857e+38
1.0
3.413e+38
0.9
7.271e+38
1.9
6
E
108
109
109
108
3.858e+38
1.0
6.297e+38
1.6
1.016e+39
2.7
7
E
123
123
123
123
7.484e+38
2.0
6.168e+38
1.6
1.365e+39
3.6
8
E
123
123
123
123
7.481e+38
2.0
1.180e+39
3.1
1.928e+39
5.0
9
A2
145
145
145
146
10
E
156
156
156
156
3.121e+37
0.1
3.568e+37
0.1
6.689e+37
0.2
11
E
156
161
161
156
3.122e+37
0.1
5.235e+37
0.1
8.357e+37
0.2
12
A1
162
162
162
162
3.096e+39
8.1
9.933e+37
0.3
3.195e+39
8.3
13
E
197
197
197
197
2.847e+38
0.7
3.464e+38
0.9
6.312e+38
1.6
14
E
197
199
199
197
2.847e+38
0.7
4.689e+38
1.2
7.537e+38
2.0
15
A1
229
229
229
229
3.032e+40
79.1
5.798e+35
0.0
3.032e+40
79.1
16
A2
270
270
270
286
17
E
304
304
304
304
2.519e+38
0.7
2.499e+38
0.7
5.018e+38
1.3
18
E
304
304
304
304
2.519e+38
0.7
2.696e+38
0.7
5.215e+38
1.4
19
A1
328
328
328
328
3.570e+38
0.9
1.478e+38
0.4
5.048e+38
1.3
20
E
363
363
363
363
8.987e+38
2.3
1.067e+39
2.8
1.966e+39
5.1
21
E
363
372
372
363
8.987e+38
2.3
1.493e+39
3.9
2.392e+39
6.2
22
E
407
407
407
407
1.277e+39
3.3
9.801e+38
2.6
2.257e+39
5.9
23
E
407
408
408
407
1.277e+39
3.3
1.623e+39
4.2
2.900e+39
7.6
24
A1
428
428
428
428
1.431e+40
37.3
1.585e+39
4.1
1.589e+40
41.5
25
A2
438
438
438
445
26
A1
454
454
454
454
3.803e+40
99.3
2.866e+38
0.7
3.831e+40
100.0
27
E
456
456
456
456
1.650e+38
0.4
1.335e+38
0.3
2.984e+38
0.8
28
E
456
457
457
456
1.651e+38
0.4
1.967e+38
0.5
3.618e+38
0.9
29
E
457
457
457
457
1.203e+39
3.1
1.640e+39
4.3
2.843e+39
7.4
30
E
457
490
490
457
1.203e+39
3.1
1.753e+39
4.6
2.956e+39
7.7
31
A2
490
512
512
540
32
E
557
557
557
557
3.464e+38
0.9
2.627e+38
0.7
6.090e+38
1.6
33
E
557
557
557
557
3.464e+38
0.9
4.514e+38
1.2
7.978e+38
2.1
34
E
647
647
647
647
2.518e+38
0.7
3.241e+38
0.8
5.759e+38
1.5
35
E
647
649
649
647
2.518e+38
0.7
4.008e+38
1.0
6.526e+38
1.7
36
A2
683
683
683
703
37
E
703
703
703
703
1.894e+38
0.5
1.428e+38
0.4
3.322e+38
0.9
38
E
703
714
714
707
1.895e+38
0.5
2.697e+38
0.7
4.592e+38
1.2
39
A2
714
720
720
714
40
A1
723
723
723
723
5.080e+38
1.3
1.254e+37
0.0
5.205e+38
1.4
41
E
744
744
744
744
3.960e+37
0.1
4.665e+37
0.1
8.625e+37
0.2
42
E
744
745
745
744
3.963e+37
0.1
4.298e+37
0.1
8.262e+37
0.2
43
A2
1088
1088
1088
1089
44
A1
1092
1092
1092
1092
2.887e+40
75.3
8.780e+37
0.2
2.896e+40
75.6
45
E
1093
1093
1093
1093
8.266e+38
2.2
9.897e+38
2.6
1.816e+39
4.7
46
E
1093
1100
1100
1093
8.266e+38
2.2
9.035e+38
2.4
1.730e+39
4.5
47
A1
1100
1100
1100
1100
4.277e+39
11.2
5.643e+38
1.5
4.842e+39
12.6
48
E
1101
1101
1101
1101
6.488e+38
1.7
8.915e+38
2.3
1.540e+39
4.0
49
E
1101
1101
1101
1101
6.488e+38
1.7
9.087e+38
2.4
1.557e+39
4.1
50
A2
1101
1114
1114
1117
51
E
1117
1117
1117
1117
2.126e+38
0.6
1.857e+38
0.5
3.983e+38
1.0
52
E
1117
1222
1222
1223
2.126e+38
0.6
3.452e+38
0.9
5.577e+38
1.5
53
E
1223
1223
1223
1223
1.442e+39
3.8
1.253e+39
3.3
2.695e+39
7.0
54
E
1223
1234
1234
1240
1.442e+39
3.8
2.337e+39
6.1
3.779e+39
9.9
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.