-    BARYTOCALCITE     -    BaCa(CO3)2

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P2_1 
Lattice parameters (Å):  8.1500  5.2200  6.5800 
Angles (°):  90.0  106.1  90.0 

Symmetry (theoretical): 

Space group:  P2_1 
Lattice parameters (Å):  8.1738  5.2269  6.5333 
Angles (°):  90.0  105.5  90.0 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ba:  0.1420  0.2248  0.2852 
Ca:  0.3773  0.7247  0.8017 
C:  0.1003  0.2248  0.7501 
C:  0.3804  0.7246  0.2498 
O:  0.9932  0.2246  0.8601 
O:  0.1513  0.4365  0.6892 
O:  0.1515  0.0132  0.6892 
O:  0.3554  0.7243  0.4315 
O:  0.3906  0.9354  0.1507 
O:  0.3907  0.5140  0.1504 
Ba:  0.8580  0.7248  0.7148 
Ca:  0.6227  0.2247  0.1983 
C:  0.8997  0.7248  0.2499 
C:  0.6196  0.2246  0.7502 
O:  0.0068  0.7246  0.1399 
O:  0.8487  0.9365  0.3108 
O:  0.8485  0.5132  0.3108 
O:  0.6446  0.2243  0.5685 
O:  0.6094  0.4354  0.8493 
O:  0.6093  0.0140  0.8496 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B
68
68
70
68
5
A
70
70
72
70
1.789e+38
0.3
2.720e+38
0.5
4.509e+38
0.8
6
B
72
72
78
72
3.402e+39
6.4
2.487e+39
4.7
5.889e+39
11.0
7
A
84
84
84
84
7.666e+39
14.4
1.145e+40
21.5
1.911e+40
35.9
8
B
85
85
85
85
1.601e+39
3.0
1.078e+39
2.0
2.679e+39
5.0
9
A
90
96
90
93
6.977e+36
0.0
9.593e+36
0.0
1.657e+37
0.0
10
B
110
110
111
110
11
A
111
111
115
111
7.413e+39
13.9
9.202e+39
17.3
1.662e+40
31.2
12
A
115
122
120
115
13
B
122
127
127
122
14
B
127
137
131
127
4.988e+39
9.4
3.811e+39
7.2
8.798e+39
16.5
15
B
140
140
140
140
16
A
142
143
142
143
17
B
148
148
148
148
2.799e+39
5.3
3.493e+39
6.6
6.292e+39
11.8
18
A
153
153
153
153
3.165e+39
5.9
3.537e+39
6.6
6.702e+39
12.6
19
B
163
163
163
163
2.478e+39
4.7
1.021e+39
1.9
3.499e+39
6.6
20
A
167
167
167
167
1.754e+39
3.3
2.048e+39
3.8
3.802e+39
7.1
21
A
175
182
175
184
22
B
184
184
192
192
23
A
192
192
194
194
1.747e+39
3.3
2.071e+39
3.9
3.818e+39
7.2
24
B
194
194
204
201
7.784e+39
14.6
6.048e+39
11.3
1.383e+40
26.0
25
B
216
216
216
216
1.039e+40
19.5
7.808e+39
14.7
1.820e+40
34.1
26
B
221
221
225
221
27
A
225
230
225
226
28
B
244
244
244
244
4.663e+39
8.8
3.485e+39
6.5
8.148e+39
15.3
29
A
249
251
249
250
30
A
264
264
264
265
1.273e+38
0.2
1.553e+38
0.3
2.826e+38
0.5
31
A
265
265
265
278
1.441e+40
27.0
1.776e+40
33.3
3.217e+40
60.4
32
B
278
278
278
296
3.373e+39
6.3
1.792e+39
3.4
5.165e+39
9.7
33
A
296
296
296
299
9.583e+38
1.8
1.039e+39
2.0
1.998e+39
3.7
34
B
299
299
309
308
35
A
309
316
316
316
36
B
316
372
350
339
3.049e+39
5.7
3.156e+39
5.9
6.206e+39
11.6
37
B
667
667
667
667
38
A
673
673
673
673
1.021e+39
1.9
1.721e+39
3.2
2.742e+39
5.1
39
B
677
677
677
677
2.019e+39
3.8
1.698e+39
3.2
3.717e+39
7.0
40
A
681
682
681
682
41
A
688
688
688
688
1.307e+39
2.5
1.894e+39
3.6
3.201e+39
6.0
42
B
688
688
688
688
43
B
704
704
704
704
1.151e+39
2.2
8.590e+38
1.6
2.010e+39
3.8
44
A
710
710
710
710
45
A
846
847
846
846
46
B
847
851
847
847
1.144e+38
0.2
1.272e+37
0.0
1.271e+38
0.2
47
B
859
859
859
859
6.429e+38
1.2
7.865e+37
0.1
7.215e+38
1.4
48
A
859
860
859
863
49
A
1082
1083
1082
1083
50
B
1085
1085
1085
1085
1.066e+40
20.0
3.248e+38
0.6
1.099e+40
20.6
51
A
1088
1088
1088
1088
52
B
1088
1088
1088
1088
5.140e+40
96.5
1.891e+39
3.5
5.329e+40
100.0
53
B
1349
1349
1376
1349
54
A
1376
1376
1376
1376
3.845e+38
0.7
4.093e+38
0.8
7.938e+38
1.5
55
B
1396
1396
1424
1396
56
A
1424
1424
1452
1424
1.675e+39
3.1
2.069e+39
3.9
3.745e+39
7.0
57
A
1452
1479
1479
1478
58
B
1479
1496
1494
1479
5.200e+38
1.0
3.341e+38
0.6
8.541e+38
1.6
59
A
1518
1520
1518
1520
60
B
1520
1525
1520
1562
4.685e+39
8.8
1.767e+39
3.3
6.452e+39
12.1
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.