-    CERUSSITE     -    PbCO3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD. Computed using Teter "extended norm-conserving" pseudopotentials. 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pmcn 
Lattice parameters (Å):  5.1832  8.4992  6.1475 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  62  Pmcn 
Lattice parameters (Å):  5.1014  8.4332  5.9115 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Pb:  0.2500  0.4167  0.7545 
C:  0.2500  0.7583  0.9108 
O:  0.2500  0.9099  0.9022 
O:  0.4671  0.6821  0.9082 
Pb:  0.7500  0.9167  0.7455 
C:  0.7500  0.2583  0.5892 
O:  0.7500  0.4099  0.5978 
O:  0.5329  0.1821  0.5918 
Pb:  0.7500  0.5833  0.2455 
C:  0.7500  0.2417  0.0892 
O:  0.7500  0.0901  0.0978 
O:  0.9671  0.3179  0.0918 
Pb:  0.2500  0.0833  0.2545 
C:  0.2500  0.7417  0.4108 
O:  0.2500  0.5901  0.4022 
O:  0.0329  0.8179  0.4082 
O:  0.5329  0.3179  0.0918 
O:  0.4671  0.8179  0.4082 
O:  0.0329  0.6821  0.9082 
O:  0.9671  0.1821  0.5918 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Au
37
37
37
37
5
B2u
59
59
60
59
6
A1g
60
60
60
60
5.915e+39
2.4
4.086e+39
1.7
1.000e+40
4.1
7
B2g
61
61
61
61
1.196e+38
0.0
1.645e+38
0.1
2.842e+38
0.1
8
B1g
62
62
62
62
7.132e+40
29.0
9.806e+40
39.8
1.694e+41
68.8
9
B3g
68
68
68
68
7.546e+38
0.3
1.038e+39
0.4
1.792e+39
0.7
10
A1g
73
73
73
73
3.149e+40
12.8
2.254e+40
9.2
5.403e+40
22.0
11
Au
86
86
86
86
12
A1g
87
87
87
87
6.336e+40
25.7
4.732e+40
19.2
1.107e+41
45.0
13
B3u
103
105
103
103
14
B1u
105
107
105
107
15
B2g
107
112
107
112
2.963e+40
12.0
4.074e+40
16.6
7.037e+40
28.6
16
B3g
112
116
112
116
4.541e+37
0.0
6.243e+37
0.0
1.078e+38
0.0
17
B2u
116
121
121
121
18
B1g
121
123
123
121
1.842e+40
7.5
2.533e+40
10.3
4.376e+40
17.8
19
B1u
123
135
141
141
20
B3u
141
148
148
148
21
B1g
148
149
149
149
4.379e+38
0.2
6.022e+38
0.2
1.040e+39
0.4
22
A1g
149
158
150
158
9.739e+39
4.0
6.993e+39
2.8
1.673e+40
6.8
23
B2u
158
161
161
161
24
B3g
161
163
163
163
1.042e+40
4.2
1.432e+40
5.8
2.474e+40
10.1
25
B2g
163
164
164
164
2.802e+40
11.4
3.853e+40
15.7
6.655e+40
27.0
26
B3u
164
168
168
168
27
Au
168
183
183
183
28
B1u
183
187
187
187
29
B2g
187
189
189
189
1.935e+39
0.8
2.661e+39
1.1
4.596e+39
1.9
30
B3g
189
210
210
210
1.486e+40
6.0
2.044e+40
8.3
3.530e+40
14.3
31
Au
210
224
224
224
32
A1g
224
239
239
236
1.638e+40
6.7
1.227e+40
5.0
2.865e+40
11.6
33
B1g
239
243
243
239
1.767e+40
7.2
2.429e+40
9.9
4.196e+40
17.0
34
B3g
243
252
252
243
1.123e+40
4.6
1.544e+40
6.3
2.667e+40
10.8
35
B1u
252
254
253
254
36
B2u
255
255
263
255
37
B1g
659
659
659
659
2.264e+39
0.9
3.113e+39
1.3
5.378e+39
2.2
38
A1g
665
665
665
665
4.999e+39
2.0
3.678e+39
1.5
8.677e+39
3.5
39
Au
667
667
667
667
40
B2u
668
668
671
668
41
B3u
671
674
673
671
42
B2g
674
676
674
674
3.818e+39
1.6
5.250e+39
2.1
9.069e+39
3.7
43
B3g
687
687
687
687
1.107e+39
0.4
1.523e+39
0.6
2.630e+39
1.1
44
B1u
690
690
690
690
45
B1u
823
823
823
824
46
A1g
824
824
824
829
1.004e+40
4.1
7.097e+37
0.0
1.011e+40
4.1
47
B3g
854
854
854
854
9.816e+36
0.0
1.350e+37
0.0
2.331e+37
0.0
48
B2u
856
856
856
856
49
B3g
1066
1066
1066
1066
1.595e+37
0.0
2.193e+37
0.0
3.788e+37
0.0
50
B1u
1067
1067
1067
1068
51
B2u
1069
1069
1069
1069
52
A1g
1070
1070
1070
1070
2.437e+41
99.0
2.473e+39
1.0
2.461e+41
100.0
53
Au
1367
1367
1367
1367
54
B1g
1385
1385
1385
1385
2.792e+40
11.3
3.838e+40
15.6
6.630e+40
26.9
55
A1g
1387
1387
1387
1387
2.114e+40
8.6
1.561e+40
6.3
3.674e+40
14.9
56
B1u
1397
1397
1397
1397
57
B2g
1401
1401
1401
1401
4.181e+40
17.0
5.749e+40
23.4
9.930e+40
40.3
58
B2u
1407
1407
1410
1407
59
B3u
1410
1496
1496
1410
60
B3g
1496
1501
1500
1496
7.091e+40
28.8
9.749e+40
39.6
1.684e+41
68.4
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.