-    PLAGIOCLASE     -    (Na,Ca)(Si,Al)4O8

BYTOWNITE - Theoretical structure, term in the plagioclase series treated as ideal solid solution using alchemical pseudopotentials. The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:     
Lattice parameters (Å):       
Angles (°):       

Symmetry (theoretical): 

Space group:     
Lattice parameters (Å):  7.6555  7.4439  7.0043 
Angles (°):  105.8  101.3  114.6 

Cell contents: 

Number of atoms:  26 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Na:  0.2450  0.2880  0.1045 
Si:  0.8396  0.1682  0.2197 
Si:  0.1882  0.8220  0.2299 
Si:  0.5663  0.7930  0.3230 
Si:  0.8075  0.5721  0.3581 
O:  0.8676  0.1251  0.9841 
O:  0.5893  0.5739  0.2788 
O:  0.6951  0.9190  0.1927 
O:  0.9576  0.6851  0.2362 
O:  0.7399  0.3179  0.2902 
O:  0.3141  0.6865  0.2141 
O:  0.0822  0.2871  0.3808 
O:  0.3364  0.0584  0.4243 
Na:  0.7550  0.7120  0.8955 
Si:  0.1604  0.8318  0.7803 
Si:  0.8118  0.1780  0.7701 
Si:  0.4337  0.2070  0.6770 
Si:  0.1925  0.4279  0.6419 
O:  0.1324  0.8749  0.0159 
O:  0.4107  0.4261  0.7212 
O:  0.3049  0.0810  0.8073 
O:  0.0424  0.3149  0.7638 
O:  0.2601  0.6821  0.7098 
O:  0.6859  0.3135  0.7859 
O:  0.9178  0.7129  0.6192 
O:  0.6636  0.9416  0.5757 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
68
68
68
68
1.121e+39
3.3
6.887e+38
2.0
1.809e+39
5.3
5
Au
79
83
84
84
6
Ag
84
84
87
85
1.662e+39
4.9
6.606e+38
1.9
2.323e+39
6.8
7
Ag
99
99
99
99
6.624e+38
1.9
2.765e+38
0.8
9.389e+38
2.8
8
Au
121
125
130
128
9
Ag
130
130
130
130
6.957e+38
2.0
1.043e+39
3.1
1.739e+39
5.1
10
Ag
146
146
146
146
2.176e+38
0.6
3.105e+38
0.9
5.281e+38
1.6
11
Au
155
156
163
156
12
Au
165
166
168
167
13
Ag
168
168
168
168
2.561e+39
7.5
6.821e+38
2.0
3.243e+39
9.5
14
Ag
172
172
172
172
5.241e+38
1.5
3.896e+38
1.1
9.138e+38
2.7
15
Ag
188
188
188
188
2.640e+39
7.8
7.914e+38
2.3
3.432e+39
10.1
16
Ag
199
199
199
199
2.670e+39
7.9
2.846e+38
0.8
2.954e+39
8.7
17
Au
203
207
204
208
18
Ag
215
215
215
215
7.032e+38
2.1
4.871e+38
1.4
1.190e+39
3.5
19
Au
228
232
229
228
20
Ag
232
233
232
232
1.313e+38
0.4
1.376e+38
0.4
2.689e+38
0.8
21
Au
234
237
238
239
22
Au
249
251
249
249
23
Ag
257
257
257
257
7.011e+38
2.1
6.439e+37
0.2
7.655e+38
2.3
24
Au
261
261
261
261
25
Ag
277
277
277
277
9.377e+39
27.6
3.077e+38
0.9
9.685e+39
28.5
26
Au
290
291
290
290
27
Ag
300
300
300
300
2.099e+38
0.6
6.253e+37
0.2
2.725e+38
0.8
28
Au
304
304
305
304
29
Ag
311
311
311
311
1.035e+38
0.3
9.149e+37
0.3
1.950e+38
0.6
30
Au
328
330
332
329
31
Ag
332
332
334
332
4.226e+38
1.2
6.108e+37
0.2
4.837e+38
1.4
32
Au
343
343
355
343
33
Ag
360
360
360
360
3.575e+38
1.1
2.321e+38
0.7
5.896e+38
1.7
34
Au
364
365
364
370
35
Au
375
378
378
389
36
Au
389
390
389
390
37
Au
390
391
391
391
38
Ag
391
394
394
394
1.735e+38
0.5
2.379e+38
0.7
4.114e+38
1.2
39
Ag
394
403
409
409
1.335e+39
3.9
1.630e+38
0.5
1.498e+39
4.4
40
Ag
409
409
411
410
1.398e+39
4.1
8.356e+37
0.2
1.482e+39
4.4
41
Au
411
411
417
415
42
Ag
446
446
446
446
4.141e+38
1.2
1.654e+38
0.5
5.796e+38
1.7
43
Au
454
455
456
454
44
Au
461
462
461
461
45
Ag
470
470
470
470
4.441e+38
1.3
4.095e+37
0.1
4.850e+38
1.4
46
Ag
474
474
474
474
5.285e+39
15.6
1.501e+38
0.4
5.435e+39
16.0
47
Ag
501
501
501
501
3.392e+40
99.8
5.107e+37
0.2
3.397e+40
100.0
48
Au
529
531
543
529
49
Ag
565
565
565
565
1.932e+39
5.7
6.939e+36
0.0
1.939e+39
5.7
50
Au
566
575
567
572
51
Au
586
597
590
605
52
Ag
621
621
621
621
1.590e+38
0.5
1.769e+38
0.5
3.359e+38
1.0
53
Ag
629
629
629
629
1.190e+39
3.5
2.848e+37
0.1
1.218e+39
3.6
54
Au
629
652
632
633
55
Au
722
722
723
724
56
Ag
724
724
724
724
2.524e+39
7.4
1.709e+38
0.5
2.695e+39
7.9
57
Au
727
728
727
727
58
Ag
744
744
744
744
1.008e+39
3.0
7.029e+38
2.1
1.711e+39
5.0
59
Au
747
747
753
750
60
Au
777
786
777
777
61
Ag
789
789
789
789
1.694e+39
5.0
2.489e+38
0.7
1.943e+39
5.7
62
Ag
792
792
792
792
6.793e+38
2.0
3.743e+38
1.1
1.054e+39
3.1
63
Au
901
901
904
904
64
Ag
904
904
915
907
9.408e+38
2.8
1.190e+39
3.5
2.131e+39
6.3
65
Ag
915
915
916
915
3.646e+38
1.1
4.483e+38
1.3
8.129e+38
2.4
66
Au
919
927
949
949
67
Ag
949
949
962
964
3.002e+38
0.9
2.120e+38
0.6
5.122e+38
1.5
68
Au
964
969
969
969
69
Ag
969
978
979
971
1.795e+38
0.5
1.957e+38
0.6
3.752e+38
1.1
70
Au
979
991
991
997
71
Ag
1012
1012
1012
1012
2.821e+38
0.8
3.390e+38
1.0
6.211e+38
1.8
72
Au
1028
1028
1028
1028
73
Au
1037
1045
1038
1041
74
Ag
1045
1060
1045
1045
1.657e+38
0.5
8.376e+37
0.2
2.495e+38
0.7
75
Ag
1060
1076
1060
1060
4.047e+38
1.2
3.643e+38
1.1
7.690e+38
2.3
76
Au
1077
1080
1080
1080
77
Ag
1080
1084
1099
1082
3.735e+38
1.1
3.594e+38
1.1
7.329e+38
2.2
78
Au
1099
1137
1126
1145
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.