-    PLAGIOCLASE     -    (Na,Ca)(Si,Al)4O8

ANORTHITE - Theoretical structure, term in the plagioclase series treated as ideal solid solution using alchemical pseudopotentials. The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:     
Lattice parameters (Å):       
Angles (°):       

Symmetry (theoretical): 

Space group:     
Lattice parameters (Å):  7.6353  7.3880  6.9699 
Angles (°):  106.1  100.6  115.0 

Cell contents: 

Number of atoms:  26 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ca:  0.2364  0.2944  0.0936 
Si:  0.8426  0.1637  0.2198 
Si:  0.1861  0.8197  0.2316 
Si:  0.5624  0.7872  0.3197 
Si:  0.8018  0.5669  0.3623 
O:  0.8695  0.1231  0.9811 
O:  0.5798  0.5618  0.2777 
O:  0.6963  0.9079  0.1855 
O:  0.9516  0.6818  0.2361 
O:  0.7438  0.3133  0.3015 
O:  0.3088  0.6782  0.2074 
O:  0.0889  0.2839  0.3751 
O:  0.3389  0.0554  0.4292 
Ca:  0.7636  0.7056  0.9064 
Si:  0.1574  0.8363  0.7802 
Si:  0.8139  0.1803  0.7684 
Si:  0.4376  0.2128  0.6803 
Si:  0.1982  0.4331  0.6377 
O:  0.1305  0.8769  0.0189 
O:  0.4202  0.4382  0.7223 
O:  0.3037  0.0921  0.8145 
O:  0.0484  0.3182  0.7639 
O:  0.2562  0.6867  0.6985 
O:  0.6912  0.3218  0.7926 
O:  0.9111  0.7161  0.6249 
O:  0.6611  0.9446  0.5708 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
68
68
68
68
2.614e+39
8.2
7.654e+38
2.4
3.379e+39
10.6
5
Au
87
91
91
92
6
Ag
93
93
93
93
1.900e+39
6.0
5.922e+38
1.9
2.493e+39
7.9
7
Ag
109
109
109
109
3.438e+38
1.1
4.596e+38
1.4
8.033e+38
2.5
8
Au
132
133
133
133
9
Ag
133
137
139
138
1.273e+39
4.0
1.355e+39
4.3
2.629e+39
8.3
10
Ag
163
163
163
163
5.032e+38
1.6
7.819e+38
2.5
1.285e+39
4.0
11
Au
163
163
174
163
12
Ag
174
174
174
174
2.927e+39
9.2
6.272e+38
2.0
3.554e+39
11.2
13
Au
176
177
178
179
14
Ag
179
179
179
179
1.409e+39
4.4
5.018e+38
1.6
1.911e+39
6.0
15
Ag
194
194
194
194
1.753e+39
5.5
5.812e+38
1.8
2.334e+39
7.4
16
Au
200
204
201
205
17
Ag
208
208
208
208
2.007e+39
6.3
1.320e+38
0.4
2.139e+39
6.7
18
Ag
216
216
216
216
1.025e+39
3.2
6.042e+38
1.9
1.629e+39
5.1
19
Au
232
233
233
232
20
Ag
233
237
233
233
4.923e+38
1.6
3.362e+38
1.1
8.285e+38
2.6
21
Au
248
249
248
249
22
Au
250
253
253
255
23
Au
257
258
257
257
24
Ag
259
259
259
259
1.537e+39
4.8
7.543e+37
0.2
1.612e+39
5.1
25
Ag
279
279
279
279
8.917e+39
28.1
5.272e+38
1.7
9.444e+39
29.8
26
Au
298
298
298
298
27
Au
307
307
307
307
28
Ag
307
307
308
307
7.247e+37
0.2
7.458e+37
0.2
1.470e+38
0.5
29
Ag
312
312
312
312
1.239e+38
0.4
1.103e+38
0.3
2.342e+38
0.7
30
Au
329
331
335
331
31
Ag
337
337
337
337
7.279e+38
2.3
3.289e+38
1.0
1.057e+39
3.3
32
Au
341
341
355
342
33
Au
361
361
361
361
34
Ag
361
363
361
371
2.913e+38
0.9
9.892e+37
0.3
3.902e+38
1.2
35
Au
377
381
387
391
36
Ag
391
391
391
391
4.779e+38
1.5
1.580e+38
0.5
6.359e+38
2.0
37
Au
392
396
393
400
38
Ag
400
400
400
406
6.544e+38
2.1
5.143e+38
1.6
1.169e+39
3.7
39
Au
406
415
416
412
40
Au
417
417
419
418
41
Ag
419
419
421
419
2.823e+39
8.9
2.277e+38
0.7
3.050e+39
9.6
42
Ag
447
447
447
447
1.689e+39
5.3
6.318e+37
0.2
1.752e+39
5.5
43
Au
458
458
460
458
44
Au
463
463
463
464
45
Ag
471
471
471
471
2.367e+38
0.7
4.000e+37
0.1
2.767e+38
0.9
46
Ag
482
482
482
482
9.544e+38
3.0
2.363e+38
0.7
1.191e+39
3.8
47
Ag
505
505
505
505
3.171e+40
99.9
2.761e+37
0.1
3.174e+40
100.0
48
Au
528
530
541
528
49
Au
560
562
562
562
50
Ag
562
566
562
563
3.111e+39
9.8
2.785e+38
0.9
3.390e+39
10.7
51
Au
586
597
589
607
52
Ag
607
607
607
609
2.523e+38
0.8
2.993e+38
0.9
5.516e+38
1.7
53
Au
622
623
623
623
54
Ag
623
650
628
627
2.142e+39
6.7
5.416e+38
1.7
2.684e+39
8.5
55
Au
709
709
710
710
56
Ag
710
710
710
710
2.253e+39
7.1
3.029e+38
1.0
2.556e+39
8.1
57
Au
721
722
722
721
58
Ag
734
734
734
734
6.987e+38
2.2
2.817e+38
0.9
9.805e+38
3.1
59
Au
743
744
749
748
60
Au
776
785
776
776
61
Ag
785
785
785
785
1.899e+39
6.0
8.937e+38
2.8
2.793e+39
8.8
62
Ag
796
796
796
796
6.953e+38
2.2
4.213e+38
1.3
1.117e+39
3.5
63
Au
877
877
880
880
64
Ag
880
880
892
884
1.180e+39
3.7
1.603e+39
5.0
2.783e+39
8.8
65
Ag
892
892
893
892
3.636e+38
1.1
4.237e+38
1.3
7.873e+38
2.5
66
Au
897
905
928
928
67
Ag
928
928
941
943
2.178e+38
0.7
1.591e+38
0.5
3.769e+38
1.2
68
Au
943
951
951
951
69
Ag
951
956
958
951
1.205e+38
0.4
1.145e+38
0.4
2.350e+38
0.7
70
Au
959
976
966
973
71
Ag
990
990
990
990
4.998e+38
1.6
6.213e+38
2.0
1.121e+39
3.5
72
Au
1004
1004
1004
1004
73
Au
1016
1025
1016
1019
74
Ag
1025
1058
1025
1025
1.904e+38
0.6
1.237e+38
0.4
3.141e+38
1.0
75
Ag
1058
1065
1058
1058
5.242e+38
1.7
4.118e+38
1.3
9.360e+38
2.9
76
Au
1074
1079
1092
1080
77
Ag
1092
1092
1111
1092
3.037e+38
1.0
3.229e+38
1.0
6.266e+38
2.0
78
Au
1112
1138
1126
1158
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.