-    UZONITE     -    As4S4

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  11  P2_1/m 
Lattice parameters (Å):  4.2191  4.2842  3.7826 
Angles (°):  90.0  101.0  90.0 

Symmetry (theoretical): 

Space group:  11  P2_1/m 
Lattice parameters (Å):  7.8251  8.1539  7.2602 
Angles (°):  90.0  102.1  90.0 

Cell contents: 

Number of atoms:  18 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

As:  0.0185  0.2500  0.8087 
As:  0.0295  0.2500  0.4630 
As:  0.3968  0.4891  0.7385 
S:  0.1891  0.4679  0.9102 
S:  0.2172  0.4624  0.4520 
S:  0.5495  0.2500  0.7809 
As:  0.9815  0.7500  0.1913 
As:  0.9705  0.7500  0.5370 
As:  0.6032  0.9891  0.2615 
S:  0.8109  0.9679  0.0898 
S:  0.7828  0.9624  0.5480 
S:  0.4505  0.7500  0.2191 
As:  0.6032  0.5109  0.2615 
S:  0.8109  0.5321  0.0898 
S:  0.7828  0.5376  0.5480 
As:  0.3968  0.0109  0.7385 
S:  0.1891  0.0321  0.9102 
S:  0.2172  0.0376  0.4520 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
19
19
19
19
5
Au
36
36
36
36
6
Bu
38
38
38
38
7
Bg
41
41
41
41
1.619e+41
4.1
1.794e+41
4.6
3.412e+41
8.7
8
Au
42
42
43
42
9
Ag
43
43
45
43
2.469e+41
6.3
1.794e+41
4.6
4.264e+41
10.8
10
Bg
46
46
46
46
3.102e+41
7.9
5.228e+41
13.3
8.331e+41
21.2
11
Ag
47
47
47
47
4.962e+41
12.6
1.359e+41
3.5
6.321e+41
16.1
12
Bg
72
72
72
72
2.114e+41
5.4
2.714e+41
6.9
4.828e+41
12.3
13
Bg
108
108
108
108
1.944e+41
4.9
2.275e+41
5.8
4.219e+41
10.7
14
Au
110
110
110
110
15
Bu
110
110
110
110
16
Ag
114
114
114
114
1.708e+41
4.3
1.874e+41
4.8
3.582e+41
9.1
17
Au
121
121
122
121
18
Ag
122
122
122
122
2.449e+41
6.2
2.059e+41
5.2
4.508e+41
11.5
19
Bg
131
131
131
131
7.178e+41
18.3
1.080e+42
27.5
1.798e+42
45.7
20
Bu
134
135
134
135
21
Au
139
139
141
139
22
Bg
143
143
143
143
1.520e+42
38.7
1.818e+42
46.2
3.338e+42
84.9
23
Bu
158
158
158
159
24
Ag
160
160
160
160
5.996e+41
15.3
7.171e+41
18.2
1.317e+42
33.5
25
Au
174
174
177
174
26
Bu
180
180
180
180
27
Ag
180
181
180
180
1.905e+42
48.4
5.958e+41
15.2
2.500e+42
63.6
28
Bg
181
183
181
181
5.656e+40
1.4
7.457e+40
1.9
1.311e+41
3.3
29
Bu
202
202
202
204
30
Ag
205
205
205
205
5.852e+41
14.9
4.644e+40
1.2
6.317e+41
16.1
31
Ag
211
211
211
211
2.959e+41
7.5
1.729e+41
4.4
4.688e+41
11.9
32
Bu
218
219
218
219
33
Ag
223
223
223
223
3.918e+42
99.7
1.355e+40
0.3
3.931e+42
100.0
34
Bu
232
233
232
232
35
Au
274
274
280
274
36
Bg
285
285
285
285
3.241e+41
8.2
4.053e+41
10.3
7.294e+41
18.6
37
Ag
289
289
289
289
8.942e+40
2.3
6.535e+40
1.7
1.548e+41
3.9
38
Bu
293
295
293
294
39
Au
296
296
297
296
40
Bg
301
301
301
301
2.157e+41
5.5
3.621e+41
9.2
5.778e+41
14.7
41
Ag
303
303
303
303
3.657e+42
93.0
2.050e+41
5.2
3.862e+42
98.2
42
Au
306
306
308
306
43
Bu
310
310
310
313
44
Bg
314
314
314
314
1.583e+41
4.0
2.358e+41
6.0
3.941e+41
10.0
45
Ag
320
320
320
320
1.199e+42
30.5
1.995e+41
5.1
1.399e+42
35.6
46
Bu
320
320
320
320
47
Bg
320
320
322
320
2.466e+42
62.7
2.035e+41
5.2
2.670e+42
67.9
48
Bu
324
324
324
325
49
Ag
345
345
345
345
5.762e+41
14.7
5.243e+41
13.3
1.101e+42
28.0
50
Bu
346
348
346
350
51
Au
351
351
357
351
52
Bu
357
365
365
357
53
Ag
365
365
365
365
3.474e+41
8.8
2.795e+41
7.1
6.270e+41
15.9
54
Bg
365
372
367
365
5.556e+41
14.1
7.459e+41
19.0
1.302e+42
33.1
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.