-    ALACRANITE     -    As8S9

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  13  P2/c 
Lattice parameters (Å):  5.2611  5.0806  4.8568 
Angles (°):  90.0  101.9  90.0 

Symmetry (theoretical): 

Space group:  13  P2/c 
Lattice parameters (Å):  10.6501  8.2818  9.7402 
Angles (°):  90.0  93.9  90.0 

Cell contents: 

Number of atoms:  34 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

As:  0.0479  0.2673  0.9301 
As:  0.1610  0.4853  0.7963 
As:  0.4226  0.3429  0.4253 
As:  0.3930  0.9992  0.1846 
S:  0.0000  0.1012  0.7500 
S:  0.0000  0.6571  0.7500 
S:  0.1438  0.3839  0.5781 
S:  0.2931  0.1462  0.3371 
S:  0.5000  0.4887  0.2500 
S:  0.4132  0.1780  0.0112 
As:  0.9521  0.2673  0.5699 
As:  0.8390  0.4853  0.7037 
As:  0.5774  0.3429  0.0747 
As:  0.6070  0.9992  0.3154 
S:  0.8562  0.3839  0.9219 
S:  0.7069  0.1462  0.1629 
S:  0.5868  0.1780  0.4888 
As:  0.9521  0.7327  0.0699 
As:  0.8390  0.5147  0.2037 
As:  0.5774  0.6571  0.5747 
As:  0.6070  0.0008  0.8154 
S:  0.0000  0.8988  0.2500 
S:  0.0000  0.3429  0.2500 
S:  0.8562  0.6161  0.4219 
S:  0.7069  0.8538  0.6629 
S:  0.5000  0.5113  0.7500 
S:  0.5868  0.8220  0.9888 
As:  0.0479  0.7327  0.4301 
As:  0.1610  0.5147  0.2963 
As:  0.4226  0.6571  0.9253 
As:  0.3930  0.0008  0.6846 
S:  0.1438  0.6161  0.0781 
S:  0.2931  0.8538  0.8371 
S:  0.4132  0.8220  0.5112 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Bu
13
13
13
15
5
Bg
15
15
15
17
6
Bu
31
32
31
31
7
Bu
37
38
37
37
8
Au
38
38
38
38
9
Bg
38
38
38
38
5.384e+40
1.3
6.511e+40
1.6
1.189e+41
3.0
10
Ag
40
40
40
40
9.302e+40
2.3
3.356e+40
0.8
1.266e+41
3.1
11
Bu
41
42
41
42
12
Bg
48
48
48
48
7.547e+40
1.9
9.074e+40
2.3
1.662e+41
4.1
13
Bu
49
49
49
49
14
Au
49
49
49
49
15
Ag
51
51
51
51
2.373e+41
5.9
1.834e+41
4.6
4.207e+41
10.5
16
Bg
54
54
54
54
5.708e+40
1.4
7.320e+40
1.8
1.303e+41
3.2
17
Ag
56
56
56
56
6.216e+40
1.5
4.909e+40
1.2
1.112e+41
2.8
18
Au
59
59
59
59
19
Bu
59
60
59
59
20
Bg
62
62
62
62
1.915e+39
0.0
2.089e+39
0.1
4.004e+39
0.1
21
Ag
63
63
63
63
5.044e+41
12.5
1.052e+41
2.6
6.096e+41
15.2
22
Bg
66
66
66
66
5.997e+40
1.5
1.011e+41
2.5
1.611e+41
4.0
23
Bg
75
75
75
75
3.808e+40
0.9
6.201e+40
1.5
1.001e+41
2.5
24
Bg
89
89
89
89
4.940e+39
0.1
8.336e+39
0.2
1.328e+40
0.3
25
Au
104
104
104
104
26
Bu
109
109
109
110
27
Ag
111
111
111
111
1.226e+41
3.0
9.406e+40
2.3
2.167e+41
5.4
28
Au
119
119
120
119
29
Bu
122
122
122
123
30
Ag
124
124
124
124
1.606e+41
4.0
1.234e+41
3.1
2.840e+41
7.1
31
Au
126
126
126
126
32
Ag
128
128
128
128
3.739e+41
9.3
3.432e+41
8.5
7.170e+41
17.8
33
Bg
131
131
131
131
3.597e+40
0.9
4.603e+40
1.1
8.200e+40
2.0
34
Bg
136
136
136
136
1.842e+40
0.5
1.994e+40
0.5
3.836e+40
1.0
35
Ag
137
137
137
137
2.797e+41
7.0
1.881e+41
4.7
4.678e+41
11.6
36
Bu
137
137
137
138
37
Au
140
140
141
140
38
Bg
143
143
143
143
5.796e+41
14.4
9.246e+41
23.0
1.504e+42
37.4
39
Bu
154
154
154
155
40
Ag
160
160
160
160
7.621e+41
18.9
4.131e+41
10.3
1.175e+42
29.2
41
Au
163
163
163
163
42
Bg
170
170
170
170
3.952e+41
9.8
4.782e+41
11.9
8.734e+41
21.7
43
Ag
172
172
172
172
1.531e+41
3.8
1.011e+41
2.5
2.542e+41
6.3
44
Bu
174
175
174
174
45
Bu
175
176
175
176
46
Bg
176
176
176
177
1.098e+41
2.7
1.237e+41
3.1
2.335e+41
5.8
47
Bu
180
181
180
181
48
Au
183
183
185
183
49
Bg
186
186
186
186
5.258e+41
13.1
8.045e+41
20.0
1.330e+42
33.1
50
Bg
188
188
188
188
2.154e+40
0.5
2.395e+40
0.6
4.549e+40
1.1
51
Au
192
192
192
192
52
Ag
194
194
194
194
1.913e+42
47.6
3.225e+41
8.0
2.235e+42
55.6
53
Ag
199
199
199
199
54
Bg
199
200
200
199
55
Ag
200
200
200
200
1.200e+41
3.0
5.386e+40
1.3
1.739e+41
4.3
56
Bg
203
203
203
203
3.500e+39
0.1
4.077e+39
0.1
7.577e+39
0.2
57
Bu
203
204
203
204
58
Ag
205
205
205
205
4.943e+41
12.3
3.201e+40
0.8
5.263e+41
13.1
59
Au
210
210
211
210
60
Bg
211
211
211
211
2.726e+40
0.7
3.020e+40
0.8
5.746e+40
1.4
61
Ag
214
214
214
214
1.476e+42
36.7
4.337e+40
1.1
1.519e+42
37.8
62
Au
220
220
220
220
63
Ag
222
222
222
222
1.026e+42
25.5
1.245e+40
0.3
1.038e+42
25.8
64
Bu
223
223
223
225
65
Au
225
225
225
228
66
Bg
232
232
232
232
4.713e+39
0.1
7.840e+39
0.2
1.255e+40
0.3
67
Au
277
277
279
277
68
Ag
279
279
279
279
1.519e+41
3.8
5.388e+40
1.3
2.057e+41
5.1
69
Bu
283
283
283
284
70
Ag
291
291
291
291
3.383e+42
84.1
6.389e+41
15.9
4.022e+42
100.0
71
Bu
297
297
297
297
72
Bg
297
298
297
299
7.785e+40
1.9
1.297e+41
3.2
2.075e+41
5.2
73
Bu
304
304
304
306
74
Ag
306
306
306
309
2.202e+42
54.7
5.304e+40
1.3
2.255e+42
56.1
75
Bu
310
310
310
311
76
Ag
311
311
311
311
9.806e+41
24.4
7.484e+40
1.9
1.055e+42
26.2
77
Bg
311
311
311
311
2.502e+39
0.1
2.645e+39
0.1
5.147e+39
0.1
78
Au
311
311
311
313
79
Bg
313
313
313
313
2.650e+41
6.6
3.004e+41
7.5
5.655e+41
14.1
80
Au
313
313
313
315
81
Bg
315
315
315
315
6.471e+40
1.6
1.004e+41
2.5
1.651e+41
4.1
82
Bu
319
319
319
319
83
Au
319
320
320
319
84
Bg
320
320
321
320
1.041e+40
0.3
1.112e+40
0.3
2.153e+40
0.5
85
Ag
322
322
322
322
2.884e+41
7.2
4.730e+40
1.2
3.357e+41
8.3
86
Ag
324
324
324
324
2.283e+42
56.8
2.986e+40
0.7
2.313e+42
57.5
87
Au
328
328
328
328
88
Au
330
330
331
330
89
Bu
340
340
340
340
90
Bu
341
343
341
343
91
Ag
343
345
343
345
1.021e+42
25.4
2.037e+40
0.5
1.042e+42
25.9
92
Au
345
347
345
345
93
Bg
347
349
347
347
2.821e+41
7.0
2.999e+41
7.5
5.820e+41
14.5
94
Bg
351
351
351
351
3.921e+39
0.1
4.169e+39
0.1
8.090e+39
0.2
95
Bu
351
352
351
352
96
Ag
352
352
352
353
1.693e+41
4.2
3.576e+39
0.1
1.729e+41
4.3
97
Au
353
353
355
355
98
Bg
355
355
357
356
1.881e+40
0.5
2.083e+40
0.5
3.964e+40
1.0
99
Bu
357
358
360
360
100
Au
360
360
360
361
101
Bg
361
361
361
362
1.574e+41
3.9
2.466e+41
6.1
4.040e+41
10.0
102
Ag
362
362
362
363
1.750e+41
4.4
1.316e+41
3.3
3.066e+41
7.6
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.