-    OTTEMANNITE     -    Sn2S3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pnma 
Lattice parameters (Å):  4.6980  1.9849  7.4191 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  62  Pnma 
Lattice parameters (Å):  8.5454  3.6703  13.5206 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sn:  0.1700  0.2500  0.0514 
Sn:  0.4926  0.7500  0.1736 
S:  0.9832  0.7500  0.1090 
S:  0.3478  0.7500  0.9941 
S:  0.2899  0.2500  0.2162 
Sn:  0.3300  0.7500  0.5514 
Sn:  0.0074  0.2500  0.6736 
S:  0.5168  0.2500  0.6090 
S:  0.1522  0.2500  0.4941 
S:  0.2101  0.7500  0.7162 
Sn:  0.8300  0.7500  0.9486 
Sn:  0.5074  0.2500  0.8264 
S:  0.0168  0.2500  0.8910 
S:  0.6522  0.2500  0.0059 
S:  0.7101  0.7500  0.7838 
Sn:  0.6700  0.2500  0.4486 
Sn:  0.9926  0.7500  0.3264 
S:  0.4832  0.7500  0.3910 
S:  0.8478  0.7500  0.5059 
S:  0.7899  0.2500  0.2838 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B1u
38
38
38
39
5
Au
39
39
39
39
6
A1g
49
49
49
49
7.793e+40
0.2
5.278e+40
0.1
1.307e+41
0.3
7
B3u
50
50
50
50
8
B1g
55
55
55
55
4.975e+41
1.1
6.840e+41
1.5
1.181e+42
2.5
9
B2g
58
58
58
58
1.460e+41
0.3
2.008e+41
0.4
3.468e+41
0.7
10
A1g
60
60
60
60
1.056e+42
2.3
3.303e+40
0.1
1.089e+42
2.3
11
B3g
61
61
61
61
1.449e+40
0.0
1.993e+40
0.0
3.442e+40
0.1
12
B1u
62
62
62
64
13
B2g
64
64
64
68
7.409e+38
0.0
1.019e+39
0.0
1.760e+39
0.0
14
B3u
70
72
70
70
15
B2u
72
72
73
72
16
Au
73
73
73
73
17
A1g
74
74
74
74
1.096e+41
0.2
6.706e+40
0.1
1.767e+41
0.4
18
B1g
81
81
81
81
2.199e+41
0.5
3.024e+41
0.6
5.223e+41
1.1
19
B3g
84
84
84
84
20
B2g
89
89
89
89
1.825e+42
3.9
2.510e+42
5.4
4.335e+42
9.3
21
B3u
113
113
113
113
22
B1u
119
119
119
125
23
A1g
151
151
151
151
6.545e+41
1.4
4.815e+41
1.0
1.136e+42
2.4
24
B2g
154
154
154
154
6.837e+40
0.1
9.400e+40
0.2
1.624e+41
0.3
25
B1u
181
181
181
187
26
A1g
187
187
187
188
5.574e+42
12.0
5.484e+41
1.2
6.123e+42
13.1
27
B3u
188
191
188
191
28
B2u
191
191
194
194
29
Au
194
194
197
197
30
B2u
197
197
200
200
31
B2g
200
200
201
201
3.161e+40
0.1
4.347e+40
0.1
7.508e+40
0.2
32
B1g
201
201
205
203
1.397e+41
0.3
1.921e+41
0.4
3.318e+41
0.7
33
Au
205
205
206
205
34
B3g
206
206
215
206
1.726e+41
0.4
2.373e+41
0.5
4.100e+41
0.9
35
B1g
215
215
220
215
2.468e+42
5.3
3.394e+42
7.3
5.862e+42
12.6
36
B3g
220
220
224
220
9.534e+40
0.2
1.311e+41
0.3
2.264e+41
0.5
37
B3u
224
233
229
224
38
B1u
233
235
233
234
39
Au
235
235
235
235
40
B2u
235
237
237
235
41
A1g
237
255
255
237
3.647e+42
7.8
8.766e+41
1.9
4.523e+42
9.7
42
B2g
255
258
260
255
1.899e+41
0.4
2.611e+41
0.6
4.511e+41
1.0
43
A1g
260
260
264
260
8.892e+42
19.1
5.267e+41
1.1
9.418e+42
20.2
44
B1g
264
264
268
264
1.224e+42
2.6
1.683e+42
3.6
2.908e+42
6.2
45
B3g
268
268
270
268
3.897e+40
0.1
5.358e+40
0.1
9.255e+40
0.2
46
B3u
270
271
271
270
47
B3u
271
273
273
271
48
B2g
273
276
276
273
2.818e+39
0.0
3.875e+39
0.0
6.693e+39
0.0
49
B1u
276
283
280
280
50
B1u
291
291
291
292
51
A1g
292
292
292
293
3.613e+41
0.8
1.446e+41
0.3
5.059e+41
1.1
52
B1u
295
295
295
296
53
B2g
296
296
296
299
4.706e+41
1.0
6.471e+41
1.4
1.118e+42
2.4
54
B3u
299
300
299
299
55
B1u
300
302
300
302
56
A1g
302
306
302
306
3.190e+43
68.4
5.216e+41
1.1
3.242e+43
69.5
57
B2g
306
307
306
313
1.892e+41
0.4
2.602e+41
0.6
4.494e+41
1.0
58
A1g
313
313
313
314
4.637e+43
99.5
2.528e+41
0.5
4.662e+43
100.0
59
B3u
317
319
317
317
60
B2g
321
321
321
321
2.721e+41
0.6
3.741e+41
0.8
6.462e+41
1.4
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.