-    KERMESITE     -    Sb2S2O

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  8.1470  10.7090  5.7850 
Angles (°):  102.8  110.6  101.0 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  7.9970  10.7279  5.8885 
Angles (°):  104.0  109.8  101.0 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sb:  0.1670  0.6304  0.0346 
Sb:  0.6626  0.6282  0.0189 
Sb:  0.1294  0.8705  0.6358 
Sb:  0.6419  0.9007  0.6582 
S:  0.8050  0.7069  0.4932 
S:  0.2929  0.7009  0.5065 
S:  0.0456  0.9146  0.2329 
S:  0.5271  0.9139  0.2311 
O:  0.9000  0.5669  0.0371 
O:  0.4098  0.5696  0.0629 
O:  0.8330  0.3696  0.9654 
O:  0.3374  0.3718  0.9811 
Sb:  0.8706  0.1295  0.3642 
Sb:  0.3581  0.0993  0.3418 
Sb:  0.1950  0.2931  0.5068 
Sb:  0.7071  0.2991  0.4935 
Sb:  0.9544  0.0854  0.7671 
Sb:  0.4729  0.0861  0.7689 
Sb:  0.1000  0.4331  0.9629 
Sb:  0.5902  0.4304  0.9371 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
36
36
36
36
4.810e+42
67.2
1.523e+42
21.3
6.333e+42
88.5
5
Au
41
43
41
41
6
Au
43
46
44
44
7
Ag
46
48
46
46
1.216e+41
1.7
8.659e+40
1.2
2.082e+41
2.9
8
Au
52
52
52
52
9
Ag
56
56
56
56
1.766e+42
24.7
1.397e+41
2.0
1.906e+42
26.6
10
Ag
69
69
69
69
11
Au
69
69
69
69
7.433e+40
1.0
5.188e+40
0.7
1.262e+41
1.8
12
Ag
78
78
78
78
5.000e+40
0.7
2.897e+40
0.4
7.897e+40
1.1
13
Au
80
80
80
80
14
Au
86
86
91
87
15
Ag
93
93
93
93
3.989e+41
5.6
5.695e+40
0.8
4.559e+41
6.4
16
Ag
99
99
99
99
1.122e+41
1.6
1.100e+41
1.5
2.222e+41
3.1
17
Ag
102
102
102
102
3.605e+41
5.0
1.618e+41
2.3
5.223e+41
7.3
18
Au
103
104
103
103
19
Au
104
105
104
104
20
Ag
105
107
105
105
3.008e+41
4.2
1.493e+41
2.1
4.501e+41
6.3
21
Au
108
119
108
108
22
Ag
119
138
119
119
9.269e+41
13.0
6.952e+40
1.0
9.964e+41
13.9
23
Ag
143
143
143
143
24
Au
143
153
144
143
4.161e+41
5.8
2.227e+41
3.1
6.388e+41
8.9
25
Au
154
156
155
154
26
Ag
156
166
156
156
1.333e+41
1.9
1.637e+41
2.3
2.969e+41
4.1
27
Ag
166
174
166
166
1.753e+41
2.4
2.324e+41
3.2
4.077e+41
5.7
28
Ag
176
176
176
176
1.085e+41
1.5
4.198e+40
0.6
1.505e+41
2.1
29
Au
176
176
185
178
30
Au
188
192
188
188
31
Ag
202
202
202
202
3.850e+41
5.4
1.538e+41
2.2
5.388e+41
7.5
32
Au
206
206
207
206
33
Ag
207
207
207
207
9.285e+41
13.0
3.840e+40
0.5
9.669e+41
13.5
34
Ag
209
209
209
209
6.736e+40
0.9
2.130e+40
0.3
8.866e+40
1.2
35
Au
211
212
212
212
36
Ag
216
216
216
216
3.023e+41
4.2
4.718e+40
0.7
3.495e+41
4.9
37
Ag
220
220
220
220
1.156e+41
1.6
6.096e+40
0.9
1.766e+41
2.5
38
Au
221
224
224
222
39
Au
230
233
233
232
40
Ag
233
240
236
233
4.551e+41
6.4
1.826e+41
2.6
6.377e+41
8.9
41
Ag
240
243
240
240
9.294e+41
13.0
4.210e+41
5.9
1.350e+42
18.9
42
Au
248
251
249
248
43
Ag
261
261
261
261
1.560e+42
21.8
9.352e+40
1.3
1.654e+42
23.1
44
Au
267
270
268
267
45
Au
271
291
288
274
46
Ag
291
292
291
291
6.624e+40
0.9
4.785e+40
0.7
1.141e+41
1.6
47
Au
293
300
294
293
48
Au
300
305
305
302
49
Ag
305
309
305
305
1.213e+42
17.0
4.849e+41
6.8
1.698e+42
23.7
50
Ag
309
315
309
309
6.575e+42
91.9
5.804e+41
8.1
7.156e+42
100.0
51
Au
316
321
316
316
52
Ag
321
323
321
321
1.608e+42
22.5
1.950e+41
2.7
1.803e+42
25.2
53
Au
323
382
325
355
54
Ag
445
445
445
445
2.146e+39
0.0
1.529e+39
0.0
3.675e+39
0.1
55
Au
445
446
445
445
56
Au
561
561
578
567
57
Ag
578
578
609
578
3.703e+41
5.2
6.173e+40
0.9
4.320e+41
6.0
58
Ag
609
609
616
609
4.564e+40
0.6
6.383e+40
0.9
1.095e+41
1.5
59
Ag
624
624
624
624
1.017e+40
0.1
8.631e+39
0.1
1.881e+40
0.3
60
Au
625
625
625
625
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.