-    BISMITE     -    Bi2O3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  14  P2_1/c 
Lattice parameters (Å):  5.8486  8.1661  7.5097 
Angles (°):  90.0  113.0  90.0 

Symmetry (theoretical): 

Space group:  14  P2_1/c 
Lattice parameters (Å):  5.7210  8.4798  7.3843 
Angles (°):  90.0  112.8  90.0 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Bi:  0.5192  0.1712  0.3628 
Bi:  0.0503  0.0340  0.7807 
O:  0.7718  0.3137  0.7087 
O:  0.2315  0.0481  0.1268 
O:  0.2665  0.0250  0.5040 
Bi:  0.4808  0.6712  0.1372 
Bi:  0.9497  0.5340  0.7193 
O:  0.2282  0.8137  0.7913 
O:  0.7685  0.5481  0.3732 
O:  0.7335  0.5250  0.9960 
Bi:  0.4808  0.8288  0.6372 
Bi:  0.9497  0.9660  0.2193 
O:  0.2282  0.6863  0.2913 
O:  0.7685  0.9519  0.8732 
O:  0.7335  0.9750  0.4960 
Bi:  0.5192  0.3288  0.8628 
Bi:  0.0503  0.4660  0.2807 
O:  0.7718  0.1863  0.2087 
O:  0.2315  0.4519  0.6268 
O:  0.2665  0.4750  0.0040 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Au
31
31
34
31
5
Bu
43
44
43
44
6
Au
47
47
48
47
7
Ag
55
55
55
55
6.412e+40
6.0
1.036e+40
1.0
7.449e+40
6.9
8
Bu
63
64
63
64
9
Bg
64
65
64
64
3.076e+39
0.3
4.918e+39
0.5
7.994e+39
0.7
10
Ag
65
65
65
65
1.592e+39
0.1
1.338e+39
0.1
2.930e+39
0.3
11
Bg
66
66
66
66
4.223e+40
3.9
5.050e+40
4.7
9.273e+40
8.6
12
Au
88
88
88
88
13
Bg
89
89
89
89
1.855e+40
1.7
2.011e+40
1.9
3.866e+40
3.6
14
Ag
90
90
90
90
4.035e+40
3.8
3.013e+40
2.8
7.048e+40
6.6
15
Bu
94
98
94
98
16
Au
98
101
101
101
17
Ag
101
107
103
107
1.036e+41
9.6
2.162e+40
2.0
1.252e+41
11.6
18
Bg
112
112
112
112
3.206e+40
3.0
4.114e+40
3.8
7.320e+40
6.8
19
Ag
123
123
123
123
2.973e+41
27.6
5.842e+39
0.5
3.032e+41
28.2
20
Bg
132
132
132
132
2.882e+40
2.7
4.020e+40
3.7
6.902e+40
6.4
21
Au
139
139
140
139
22
Ag
140
140
141
140
1.532e+40
1.4
7.728e+39
0.7
2.305e+40
2.1
23
Bg
149
149
149
149
6.465e+40
6.0
6.922e+40
6.4
1.339e+41
12.4
24
Bu
151
153
151
152
25
Bg
155
155
155
155
1.908e+40
1.8
2.028e+40
1.9
3.936e+40
3.7
26
Au
165
165
165
165
27
Ag
179
179
179
179
3.330e+41
31.0
4.063e+40
3.8
3.736e+41
34.7
28
Bu
179
186
179
179
29
Au
186
187
188
186
30
Bu
189
195
189
215
31
Au
215
215
221
221
32
Ag
221
221
222
227
2.306e+40
2.1
1.012e+40
0.9
3.318e+40
3.1
33
Bu
228
230
228
230
34
Bg
230
270
230
238
7.157e+40
6.7
7.639e+40
7.1
1.480e+41
13.8
35
Bu
293
296
293
296
36
Ag
296
303
296
303
1.046e+42
97.3
2.955e+40
2.7
1.076e+42
100.0
37
Au
303
312
309
312
38
Bg
312
316
312
324
6.260e+38
0.1
6.752e+38
0.1
1.301e+39
0.1
39
Ag
324
324
324
326
4.602e+41
42.8
1.765e+40
1.6
4.778e+41
44.4
40
Bg
326
326
326
340
2.440e+39
0.2
3.877e+39
0.4
6.318e+39
0.6
41
Au
340
340
348
348
42
Ag
348
348
372
360
6.029e+41
56.0
5.156e+40
4.8
6.544e+41
60.8
43
Bu
372
374
390
390
44
Bg
390
390
393
394
3.108e+40
2.9
5.026e+40
4.7
8.133e+40
7.6
45
Au
394
394
401
398
46
Bu
416
422
416
427
47
Au
427
427
430
427
48
Bu
430
432
432
432
49
Ag
432
447
433
447
4.525e+41
42.1
4.218e+40
3.9
4.947e+41
46.0
50
Bg
447
458
447
458
1.903e+40
1.8
2.111e+40
2.0
4.014e+40
3.7
51
Ag
458
468
458
468
8.957e+40
8.3
1.346e+40
1.3
1.030e+41
9.6
52
Bg
468
483
468
483
8.899e+39
0.8
1.309e+40
1.2
2.199e+40
2.0
53
Ag
483
485
483
485
6.438e+41
59.8
1.094e+40
1.0
6.547e+41
60.9
54
Bg
485
493
485
493
1.945e+40
1.8
2.075e+40
1.9
4.021e+40
3.7
55
Au
493
498
515
512
56
Bu
515
538
531
536
57
Ag
538
549
538
538
2.429e+40
2.3
1.617e+40
1.5
4.046e+40
3.8
58
Au
549
550
554
549
59
Bg
554
554
557
554
1.466e+39
0.1
2.267e+39
0.2
3.733e+39
0.3
60
Bu
557
574
577
558
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.