-    AMBLYGONITE     -    LiAlPO4F

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  2.7411  3.7836  2.6480 
Angles (°):  112.1  97.8  67.9 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  5.0534  7.0617  4.9853 
Angles (°):  113.9  98.1  67.5 

Cell contents: 

Number of atoms:  16 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

P:  0.0000  0.3601  0.2557 
O:  0.9308  0.2360  0.4108 
O:  0.7673  0.3238  0.3906 
O:  0.2653  0.2224  0.0826 
O:  0.8407  0.6776  0.1519 
F:  0.8451  0.9392  0.2407 
Li:  0.3431  0.6211  0.2870 
Al:  0.5512  0.0000  0.0000 
Al:  0.0000  0.0000  0.5000 
P:  0.5000  0.6399  0.7443 
O:  0.0692  0.7640  0.5892 
O:  0.2327  0.6762  0.6094 
O:  0.7347  0.7776  0.9174 
O:  0.1593  0.3224  0.8481 
F:  0.1549  0.0608  0.7593 
Li:  0.6569  0.3789  0.7130 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
AC
0
0
0
0
2
AC
0
0
0
0
3
AC
0
0
0
0
4
Au
82
87
96
96
5
Ag
96
96
130
109
2.548e+39
7.4
2.801e+39
8.2
5.349e+39
15.6
6
Ag
148
148
148
148
1.337e+39
3.9
1.819e+39
5.3
3.156e+39
9.2
7
Ag
165
165
165
165
3.911e+39
11.4
4.800e+38
1.4
4.391e+39
12.8
8
Au
185
185
190
186
9
Ag
197
197
197
197
5.614e+38
1.6
6.051e+38
1.8
1.167e+39
3.4
10
Au
205
206
205
209
11
Ag
262
262
262
262
9.979e+38
2.9
3.951e+38
1.1
1.393e+39
4.1
12
Au
276
279
277
277
13
Au
300
302
300
301
14
Ag
302
304
302
302
6.370e+39
18.5
1.537e+39
4.5
7.907e+39
23.0
15
Ag
307
307
307
307
5.620e+39
16.4
3.467e+38
1.0
5.967e+39
17.4
16
Au
314
314
314
315
17
Au
315
317
326
324
18
Ag
326
326
329
326
1.504e+39
4.4
2.800e+38
0.8
1.784e+39
5.2
19
Ag
337
337
337
337
3.225e+38
0.9
2.459e+38
0.7
5.685e+38
1.7
20
Au
363
363
363
367
21
Ag
368
368
368
368
4.914e+39
14.3
1.552e+38
0.5
5.069e+39
14.7
22
Au
386
386
395
395
23
Au
395
404
397
412
24
Au
415
418
417
415
25
Ag
418
419
418
418
3.971e+39
11.6
3.795e+39
11.0
7.765e+39
22.6
26
Au
438
455
450
439
27
Au
471
471
471
471
28
Ag
471
487
487
485
5.304e+39
15.4
1.871e+39
5.4
7.175e+39
20.9
29
Ag
487
491
490
487
1.535e+39
4.5
1.297e+39
3.8
2.832e+39
8.2
30
Au
492
509
509
509
31
Ag
509
512
512
520
3.222e+38
0.9
2.176e+38
0.6
5.398e+38
1.6
32
Au
524
563
540
533
33
Au
568
574
581
582
34
Au
582
591
591
591
35
Ag
591
597
599
591
3.475e+39
10.1
2.898e+39
8.4
6.374e+39
18.5
36
Au
600
621
621
621
37
Ag
621
635
633
640
1.737e+39
5.1
1.348e+39
3.9
3.085e+39
9.0
38
Ag
640
640
640
640
1.734e+40
50.4
8.129e+38
2.4
1.815e+40
52.8
39
Au
645
649
646
662
40
Au
678
678
685
678
41
Ag
986
986
986
986
2.567e+40
74.7
1.452e+39
4.2
2.712e+40
78.9
42
Au
991
991
991
1024
43
Ag
1051
1051
1051
1051
7.975e+39
23.2
2.293e+39
6.7
1.027e+40
29.9
44
Au
1055
1059
1059
1059
45
Ag
1059
1061
1067
1068
3.332e+40
96.9
1.053e+39
3.1
3.437e+40
100.0
46
Au
1087
1103
1090
1103
47
Au
1111
1148
1148
1148
48
Ag
1148
1201
1211
1161
3.632e+39
10.6
2.967e+39
8.6
6.599e+39
19.2
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.