-    GUNNINGITE     -    ZnSO4H2O

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  15  C2/c 
Lattice parameters (Å):  3.6646  4.0170  4.0403 
Angles (°):  102.67  102.81  86.88 

Symmetry (theoretical): 

Space group:  15  C2/c 
Lattice parameters (Å):  5.0819  5.0819  7.3782 
Angles (°):  73.10  106.89  81.50 

Cell contents: 

Number of atoms:  18 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Zn:  0.5000  0.5000  0.0000 
S:  0.1600  0.1600  0.2500 
O:  0.2210  0.8850  0.4088 
O:  0.3900  0.1564  0.1631 
O:  0.6320  0.6320  0.2500 
H:  0.8464  0.5674  0.2944 
Zn:  0.5000  0.5000  0.5000 
O:  0.8850  0.2210  0.0912 
O:  0.1564  0.3900  0.3369 
H:  0.5674  0.8464  0.2056 
S:  0.8400  0.8400  0.7500 
O:  0.7790  0.1150  0.5912 
O:  0.6100  0.8436  0.8369 
O:  0.3680  0.3680  0.7500 
H:  0.1536  0.4326  0.7056 
O:  0.1150  0.7790  0.9088 
O:  0.8436  0.6100  0.6631 
H:  0.4326  0.1536  0.7944 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Bg
59
59
59
59
1.139e+38
0.1
1.304e+38
0.1
2.443e+38
0.1
5
Au
98
98
98
98
6
Bu
99
100
99
104
7
Bg
118
118
118
118
5.470e+37
0.0
7.522e+37
0.0
1.299e+38
0.1
8
Ag
128
128
128
128
1.854e+39
0.9
4.941e+38
0.3
2.348e+39
1.2
9
Bu
137
137
137
137
10
Bu
139
147
139
160
11
Au
174
174
174
174
12
Bg
186
186
186
186
2.818e+37
0.0
3.027e+37
0.0
5.845e+37
0.0
13
Au
187
187
213
187
14
Bu
213
214
226
228
15
Bg
228
228
228
239
1.669e+38
0.1
1.794e+38
0.1
3.463e+38
0.2
16
Ag
239
239
239
246
3.007e+40
15.4
1.169e+39
0.6
3.124e+40
16.0
17
Au
257
257
277
257
18
Bu
277
279
279
277
19
Bg
301
301
301
301
8.444e+39
4.3
1.306e+40
6.7
2.151e+40
11.0
20
Ag
305
305
305
305
2.309e+40
11.8
2.552e+39
1.3
2.564e+40
13.1
21
Bu
327
344
327
327
22
Au
344
364
350
344
23
Bu
376
378
376
378
24
Bg
378
401
378
386
1.603e+39
0.8
1.703e+39
0.9
3.306e+39
1.7
25
Ag
405
405
405
405
1.274e+40
6.5
4.494e+39
2.3
1.724e+40
8.8
26
Au
411
411
411
411
27
Ag
509
509
509
509
1.488e+40
7.6
1.349e+40
6.9
2.836e+40
14.5
28
Au
532
532
533
532
29
Bu
587
588
587
599
30
Bg
601
601
601
601
1.060e+40
5.4
1.612e+40
8.2
2.672e+40
13.6
31
Bu
604
606
604
604
32
Bg
606
609
606
606
5.621e+39
2.9
8.214e+39
4.2
1.383e+40
7.1
33
Au
609
613
613
609
34
Ag
613
650
620
613
9.447e+39
4.8
5.948e+39
3.0
1.540e+40
7.9
35
Bg
782
782
782
782
9.236e+38
0.5
1.035e+39
0.5
1.959e+39
1.0
36
Bu
785
801
785
798
37
Bu
953
980
953
980
38
Au
980
983
983
983
39
Ag
983
1023
988
985
1.913e+41
97.7
8.817e+38
0.5
1.922e+41
98.2
40
Bg
1023
1034
1023
1023
5.538e+39
2.8
6.370e+39
3.3
1.191e+40
6.1
41
Au
1034
1040
1034
1034
42
Bg
1045
1045
1045
1045
9.756e+39
5.0
1.619e+40
8.3
2.595e+40
13.3
43
Ag
1062
1062
1062
1062
2.482e+39
1.3
1.194e+39
0.6
3.676e+39
1.9
44
Bu
1081
1081
1081
1081
45
Ag
1081
1088
1081
1087
4.180e+40
21.3
1.561e+40
8.0
5.741e+40
29.3
46
Au
1106
1106
1165
1106
47
Bu
1165
1198
1181
1198
48
Bg
1198
1216
1198
1231
1.336e+40
6.8
1.428e+40
7.3
2.764e+40
14.1
49
Ag
1496
1496
1496
1496
5.736e+39
2.9
4.032e+39
2.1
9.768e+39
5.0
50
Au
1512
1512
1515
1512
51
Bu
2859
2865
2859
2865
52
Bg
2865
2904
2865
2865
2.276e+40
11.6
3.037e+40
15.5
5.313e+40
27.1
53
Ag
2904
2926
2904
2904
1.698e+41
86.7
2.602e+40
13.3
1.958e+41
100.0
54
Au
2926
2995
2954
2926
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.