-    WULFINGITE     -    Zn(OH)2

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  19  P2_12_12_1 
Lattice parameters (Å):  2.5956  2.7216  4.4837 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  19  P2_12_12_1 
Lattice parameters (Å):  8.8585711441E+00  9.3275834656E+00  1.5871660072E+01 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Zn:  0.0755  0.6376  0.6228 
O:  0.1098  0.1091  0.0841 
O:  0.1918  0.3058  0.7265 
H:  0.4483  0.3573  0.8358 
H:  0.2317  0.8457  0.1548 
Zn:  0.4245  0.3624  0.1228 
O:  0.3902  0.8909  0.5841 
O:  0.3082  0.6942  0.2265 
H:  0.0517  0.6427  0.3358 
H:  0.2683  0.1543  0.6548 
Zn:  0.9245  0.1376  0.8772 
O:  0.8902  0.6091  0.4159 
O:  0.8082  0.8058  0.7735 
H:  0.5517  0.8573  0.6642 
H:  0.7683  0.3457  0.3452 
Zn:  0.5755  0.8624  0.3772 
O:  0.6098  0.3909  0.9159 
O:  0.6918  0.1942  0.2735 
H:  0.9483  0.1427  0.1642 
H:  0.7317  0.6543  0.8452 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
A
64
64
64
64
8.401e+38
0.1
1.332e+38
0.0
9.733e+38
0.2
5
A
97
97
97
97
5.513e+38
0.1
3.616e+38
0.1
9.129e+38
0.2
6
B1
113
113
113
117
2.870e+38
0.1
3.946e+38
0.1
6.816e+38
0.1
7
B1
132
132
132
132
2.249e+39
0.4
3.092e+39
0.5
5.341e+39
0.9
8
B3
132
132
132
134
1.274e+38
0.0
1.752e+38
0.0
3.026e+38
0.1
9
B2
140
140
140
140
3.843e+39
0.7
5.284e+39
0.9
9.127e+39
1.6
10
B3
153
154
153
153
1.875e+38
0.0
2.578e+38
0.0
4.453e+38
0.1
11
A
154
154
154
154
2.662e+39
0.5
1.995e+39
0.4
4.657e+39
0.8
12
B2
158
158
161
158
1.685e+38
0.0
2.318e+38
0.0
4.003e+38
0.1
13
A
173
173
173
173
6.096e+39
1.1
3.825e+38
0.1
6.478e+39
1.1
14
B2
208
208
221
208
8.578e+38
0.2
1.179e+39
0.2
2.037e+39
0.4
15
B3
236
247
236
236
3.832e+38
0.1
5.268e+38
0.1
9.100e+38
0.2
16
B1
247
267
247
254
3.285e+39
0.6
4.516e+39
0.8
7.801e+39
1.4
17
B1
296
296
296
315
1.104e+39
0.2
1.518e+39
0.3
2.622e+39
0.5
18
B3
315
321
315
320
2.849e+38
0.1
3.917e+38
0.1
6.766e+38
0.1
19
B2
333
333
357
333
1.172e+39
0.2
1.612e+39
0.3
2.784e+39
0.5
20
A
357
357
359
357
3.718e+39
0.7
1.460e+39
0.3
5.178e+39
0.9
21
B3
405
406
405
405
22
B1
406
420
406
416
6.405e+38
0.1
8.807e+38
0.2
1.521e+39
0.3
23
A
420
428
420
420
1.065e+41
18.8
1.704e+38
0.0
1.067e+41
18.9
24
B2
428
441
434
428
3.476e+38
0.1
4.779e+38
0.1
8.255e+38
0.1
25
B2
441
442
442
441
2.098e+39
0.4
2.885e+39
0.5
4.983e+39
0.9
26
A
442
449
460
442
4.886e+40
8.6
7.342e+38
0.1
4.959e+40
8.8
27
B3
460
461
462
460
1.172e+39
0.2
1.611e+39
0.3
2.783e+39
0.5
28
B1
462
462
479
463
6.940e+38
0.1
9.542e+38
0.2
1.648e+39
0.3
29
A
487
487
487
487
1.007e+40
1.8
2.033e+38
0.0
1.028e+40
1.8
30
B3
499
500
499
499
1.674e+39
0.3
2.301e+39
0.4
3.975e+39
0.7
31
B2
500
500
500
500
4.353e+38
0.1
5.986e+38
0.1
1.034e+39
0.2
32
A
500
523
508
500
7.258e+39
1.3
7.041e+38
0.1
7.962e+39
1.4
33
B1
532
532
532
554
5.115e+39
0.9
7.034e+39
1.2
1.215e+40
2.1
34
B1
555
555
555
565
1.726e+38
0.0
2.374e+38
0.0
4.100e+38
0.1
35
B2
565
565
565
583
1.344e+38
0.0
1.848e+38
0.0
3.192e+38
0.1
36
B3
583
583
583
590
4.896e+37
0.0
6.731e+37
0.0
1.163e+38
0.0
37
B3
949
959
949
949
4.759e+39
0.8
6.544e+39
1.2
1.130e+40
2.0
38
B1
959
959
959
959
3.519e+39
0.6
4.839e+39
0.9
8.357e+39
1.5
39
A
1014
1014
1014
1014
6.654e+39
1.2
4.958e+39
0.9
1.161e+40
2.1
40
B2
1025
1025
1029
1025
3.776e+38
0.1
5.192e+38
0.1
8.967e+38
0.2
41
A
1118
1118
1118
1118
2.692e+39
0.5
1.987e+39
0.4
4.678e+39
0.8
42
B2
1123
1123
1137
1123
4.714e+37
0.0
6.481e+37
0.0
1.119e+38
0.0
43
B3
1167
1167
1167
1167
44
B1
1167
1168
1167
1168
7.676e+37
0.0
1.056e+38
0.0
1.823e+38
0.0
45
B2
1184
1184
1187
1184
3.519e+39
0.6
4.838e+39
0.9
8.357e+39
1.5
46
A
1187
1187
1201
1187
2.287e+39
0.4
1.715e+39
0.3
4.002e+39
0.7
47
B3
1258
1259
1258
1258
2.100e+39
0.4
2.887e+39
0.5
4.987e+39
0.9
48
B1
1259
1263
1259
1261
3.990e+38
0.1
5.487e+38
0.1
9.477e+38
0.2
49
A
1314
1314
1314
1314
3.664e+39
0.6
2.655e+39
0.5
6.319e+39
1.1
50
B1
1315
1315
1315
1315
1.163e+39
0.2
1.600e+39
0.3
2.763e+39
0.5
51
B3
1316
1323
1316
1316
1.252e+39
0.2
1.722e+39
0.3
2.974e+39
0.5
52
B2
1324
1324
1325
1324
8.588e+37
0.0
1.181e+38
0.0
2.040e+38
0.0
53
A
2470
2470
2470
2470
5.652e+41
99.9
6.885e+38
0.1
5.659e+41
100.0
54
B2
2471
2471
2540
2471
1.205e+40
2.1
1.657e+40
2.9
2.863e+40
5.1
55
B1
2624
2624
2624
2636
56
B3
2636
2648
2636
2639
8.105e+39
1.4
1.114e+40
2.0
1.925e+40
3.4
57
B1
2648
2714
2648
2729
3.057e+40
5.4
4.204e+40
7.4
7.261e+40
12.8
58
B3
2729
2752
2729
2752
1.059e+40
1.9
1.456e+40
2.6
2.515e+40
4.4
59
A
2752
2789
2752
2765
4.187e+40
7.4
2.780e+40
4.9
6.967e+40
12.3
60
B2
2789
2810
2862
2789
2.342e+40
4.1
3.220e+40
5.7
5.562e+40
9.8
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.