-    STRONTIANITE     -    SrCO3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD. Computed using Teter "extended norm-conserving" pseudopotentials. 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62   Pmcn  
Lattice parameters (Å):  2.7028  4.4524  3.1893 
Angles (°):  90  90  90  

Symmetry (theoretical): 

Space group:  62   Pmcn  
Lattice parameters (Å):  5.0179  8.2914  5.7702 
Angles (°):  90  90  90  

Cell contents: 

Number of atoms:  20  
Number of atom types:  3  
Chemical composition: 

Atomic positions (theoretical):

Sr:  0.2500  0.4164  0.7566 
C:  0.2500  0.7582  0.9098 
O:  0.2500  0.9119  0.9000 
O:  0.4704  0.6807  0.9092 
Sr:  0.7500  0.9164  0.7434 
C:  0.7500  0.2582  0.5902 
O:  0.7500  0.4119  0.6000 
O:  0.5296  0.1807  0.5908 
Sr:  0.7500  0.5836  0.2434 
C:  0.7500  0.2418  0.0902 
O:  0.7500  0.0881  0.1000 
O:  0.9704  0.3193  0.0908 
Sr:  0.2500  0.0836  0.2566 
C:  0.2500  0.7418  0.4098 
O:  0.2500  0.5881  0.4000 
O:  0.0296  0.8193  0.4092 
O:  0.5296  0.3193  0.0908 
O:  0.4704  0.8193  0.4092 
O:  0.0296  0.6807  0.9092 
O:  0.9704  0.1807  0.5908 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
A1g
99
99
99
99
8.010e+38
0.8
4.584e+38
0.4
1.259e+39
1.2
5
B2u
105
105
105
105
6
B2g
106
106
106
106
8.710e+38
0.8
1.198e+39
1.2
2.069e+39
2.0
7
Au
109
109
109
109
8
B1g
121
121
121
121
2.475e+39
2.4
3.403e+39
3.3
5.878e+39
5.7
9
B3g
134
134
134
134
9.306e+37
0.1
1.280e+38
0.1
2.210e+38
0.2
10
A1g
138
138
138
138
5.627e+38
0.5
2.929e+38
0.3
8.555e+38
0.8
11
B3u
147
154
147
147
12
B2g
155
155
155
155
3.688e+40
35.6
5.071e+40
48.9
8.760e+40
84.5
13
Au
162
162
162
162
14
A1g
172
172
172
172
2.095e+39
2.0
1.568e+39
1.5
3.663e+39
3.5
15
B1g
179
179
179
179
3.019e+39
2.9
4.151e+39
4.0
7.170e+39
6.9
16
B3g
180
180
180
180
7.156e+37
0.1
9.840e+37
0.1
1.700e+38
0.2
17
B1u
181
181
181
185
18
B2u
185
185
190
190
19
B3u
190
191
191
190
20
B1g
191
191
191
191
1.476e+40
14.2
2.071e+40
20.0
3.547e+40
34.2
21
B1g
191
192
194
191
9.501e+39
9.2
1.264e+40
12.2
2.214e+40
21.4
22
A1g
194
194
195
194
6.444e+39
6.2
4.384e+39
4.2
1.083e+40
10.4
23
B1u
195
195
198
197
24
B1u
199
199
199
202
25
Au
202
202
202
211
26
B2g
211
211
211
216
2.025e+39
2.0
2.785e+39
2.7
4.810e+39
4.6
27
B3u
216
232
216
232
28
B2g
232
236
232
236
1.917e+38
0.2
2.635e+38
0.3
4.552e+38
0.4
29
B2u
236
248
248
248
30
Au
248
250
250
250
31
B3g
250
260
260
260
2.285e+39
2.2
3.141e+39
3.0
5.426e+39
5.2
32
B3g
260
262
262
262
3.581e+39
3.5
4.925e+39
4.8
8.506e+39
8.2
33
B1g
262
275
275
275
5.009e+39
4.8
6.888e+39
6.6
1.190e+40
11.5
34
A1g
275
276
276
275
4.156e+39
4.0
3.060e+39
3.0
7.217e+39
7.0
35
B2u
276
276
276
276
36
B1u
276
309
315
290
37
Au
688
688
688
688
38
B1g
688
688
688
688
4.021e+39
3.9
5.529e+39
5.3
9.550e+39
9.2
39
B3u
692
693
692
692
40
A1g
693
694
693
693
6.990e+39
6.7
5.124e+39
4.9
1.211e+40
11.7
41
B2g
695
695
695
695
9.231e+38
0.9
1.269e+39
1.2
2.192e+39
2.1
42
B2u
699
699
701
699
43
B3g
706
706
706
706
7.120e+38
0.7
9.790e+38
0.9
1.691e+39
1.6
44
B1u
708
708
708
708
45
B1u
835
835
835
835
46
A1g
835
835
835
852
1.763e+37
0.0
4.167e+36
0.0
2.180e+37
0.0
47
B3g
878
878
878
878
8.606e+35
0.0
1.183e+36
0.0
2.044e+36
0.0
48
B2u
880
880
880
880
49
B3g
1082
1082
1082
1082
1.036e+37
0.0
1.424e+37
0.0
2.460e+37
0.0
50
B3u
1084
1084
1084
1084
51
B3u
1084
1084
1084
1085
52
A1g
1085
1085
1085
1085
1.019e+41
98.3
1.769e+39
1.7
1.037e+41
100.0
53
Au
1406
1406
1406
1406
54
B1g
1424
1424
1424
1424
7.159e+36
0.0
9.844e+36
0.0
1.700e+37
0.0
55
Ag
1449
1449
1449
1449
2.206e+38
0.2
1.809e+37
0.0
2.386e+38
0.2
56
Ag
1449
1449
1449
1449
2.135e+38
0.2
1.751e+37
0.0
2.310e+38
0.2
57
B3u
1456
1462
1456
1456
58
B2u
1462
1464
1464
1462
59
B2g
1464
1563
1563
1464
2.988e+39
2.9
4.109e+39
4.0
7.097e+39
6.8
60
B3g
1563
1564
1572
1563
2.511e+39
2.4
3.453e+39
3.3
5.965e+39
5.8
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.