-    IIMORIITE     -    Y2SiO4CO3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  6.5495  6.6291  6.4395 
Angles (°):  116.364  92.556  95.506 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  6.3302  6.3285  6.1895 
Angles (°):  115.74  93.21  96.17 

Cell contents: 

Number of atoms:  22 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Y:  0.1793  0.1796  0.2481 
Y:  0.4173  0.6980  0.2536 
Si:  0.6624  0.2427  0.2647 
C:  0.9117  0.7318  0.1966 
O:  0.1061  0.8351  0.2686 
O:  0.5278  0.3381  0.1059 
O:  0.4845  0.0824  0.3357 
O:  0.1589  0.9075  0.8700 
O:  0.2186  0.2503  0.6502 
O:  0.1497  0.3830  0.0277 
O:  0.2541  0.5520  0.4706 
Y:  0.8207  0.8204  0.7519 
Y:  0.5827  0.3020  0.7464 
Si:  0.3376  0.7573  0.7353 
C:  0.0883  0.2682  0.8034 
O:  0.8939  0.1649  0.7314 
O:  0.4722  0.6619  0.8941 
O:  0.5155  0.9176  0.6643 
O:  0.8411  0.0925  0.1300 
O:  0.7814  0.7497  0.3498 
O:  0.8503  0.6170  0.9723 
O:  0.7459  0.4480  0.5294 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
94
94
94
94
1.868e+39
3.1
1.927e+39
3.2
3.795e+39
6.2
5
Au
105
120
106
106
6
Ag
136
136
136
136
2.478e+39
4.1
2.712e+39
4.5
5.190e+39
8.5
7
Ag
148
148
148
148
3.589e+38
0.6
4.517e+38
0.7
8.106e+38
1.3
8
Au
175
177
176
175
9
Au
189
192
189
192
10
Ag
193
193
193
193
6.374e+38
1.0
4.829e+38
0.8
1.120e+39
1.8
11
Ag
200
200
200
200
3.537e+39
5.8
7.892e+38
1.3
4.326e+39
7.1
12
Ag
210
210
210
210
2.350e+39
3.9
2.520e+39
4.1
4.870e+39
8.0
13
Au
228
228
229
229
14
Ag
229
229
230
235
1.612e+39
2.7
1.346e+39
2.2
2.959e+39
4.9
15
Ag
238
238
238
238
4.601e+39
7.6
4.271e+39
7.0
8.873e+39
14.6
16
Au
245
245
245
250
17
Au
258
264
258
258
18
Ag
264
264
264
264
4.922e+39
8.1
3.051e+39
5.0
7.973e+39
13.1
19
Au
272
285
279
272
20
Ag
285
285
285
285
3.634e+39
6.0
5.158e+39
8.5
8.791e+39
14.5
21
Au
287
293
293
292
22
Ag
293
296
305
293
5.840e+39
9.6
4.672e+39
7.7
1.051e+40
17.3
23
Ag
305
305
310
305
3.956e+39
6.5
4.139e+39
6.8
8.094e+39
13.3
24
Au
313
313
329
317
25
Au
334
336
334
334
26
Ag
336
355
336
336
3.286e+39
5.4
3.081e+39
5.1
6.367e+39
10.5
27
Au
355
361
358
369
28
Ag
369
369
369
371
6.434e+39
10.6
4.167e+39
6.9
1.060e+40
17.4
29
Au
371
376
379
388
30
Ag
388
388
388
396
1.484e+40
24.4
1.489e+40
24.5
2.973e+40
48.9
31
Ag
405
405
405
405
4.151e+39
6.8
2.932e+39
4.8
7.083e+39
11.6
32
Au
408
412
409
416
33
Au
417
419
421
421
34
Ag
421
421
425
427
6.493e+39
10.7
6.057e+39
10.0
1.255e+40
20.6
35
Ag
427
427
427
429
7.216e+39
11.9
6.606e+39
10.9
1.382e+40
22.7
36
Au
430
447
433
438
37
Ag
453
453
453
453
8.010e+39
13.2
7.386e+39
12.1
1.540e+40
25.3
38
Au
471
473
481
471
39
Ag
481
481
481
481
5.429e+39
8.9
5.180e+39
8.5
1.061e+40
17.4
40
Au
505
505
506
508
41
Au
544
566
546
548
42
Ag
574
574
574
574
2.398e+39
3.9
2.237e+39
3.7
4.636e+39
7.6
43
Au
575
584
584
580
44
Ag
584
586
590
584
2.035e+39
3.3
8.332e+38
1.4
2.868e+39
4.7
45
Au
608
608
623
623
46
Ag
623
623
625
633
1.307e+39
2.1
1.564e+39
2.6
2.871e+39
4.7
47
Au
698
699
699
698
48
Ag
707
707
707
707
1.232e+39
2.0
1.692e+39
2.8
2.923e+39
4.8
49
Ag
737
737
737
737
2.615e+39
4.3
1.241e+39
2.0
3.856e+39
6.3
50
Au
738
738
739
738
51
Au
824
826
831
824
52
Ag
832
832
832
832
6.639e+39
10.9
4.617e+39
7.6
1.126e+40
18.5
53
Au
853
867
870
853
54
Ag
870
870
878
870
8.574e+39
14.1
7.399e+38
1.2
9.314e+39
15.3
55
Au
899
900
914
907
56
Ag
914
914
929
914
2.858e+40
47.0
1.397e+39
2.3
2.998e+40
49.3
57
Au
961
978
968
964
58
Ag
978
983
978
978
8.225e+39
13.5
4.148e+39
6.8
1.237e+40
20.3
59
Au
989
1016
1016
1016
60
Ag
1016
1019
1016
1043
7.139e+39
11.7
5.267e+39
8.7
1.241e+40
20.4
61
Au
1121
1122
1121
1122
62
Ag
1126
1126
1126
1126
6.036e+40
99.3
4.438e+38
0.7
6.081e+40
100.0
63
Ag
1416
1416
1416
1416
6.300e+39
10.4
5.028e+39
8.3
1.133e+40
18.6
64
Au
1469
1480
1473
1474
65
Au
1488
1501
1493
1501
66
Ag
1501
1546
1501
1555
4.151e+39
6.8
4.575e+39
7.5
8.725e+39
14.3
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.