-    PABSTITE     -    BaSnSi3O9

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD. Tetter norm-conserving pseudopotential for Ba. 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  188  P-6c2 
Lattice parameters (Å):  6.7420  6.7420  9.9300 
Angles (°):  90  90  120 

Symmetry (theoretical): 

Space group:  188  P-6c2 
Lattice parameters (Å):  6.7637  6.7637  9.8665 
Angles (°):  90  90  120 

Cell contents: 

Number of atoms:  28 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ba:  0.6667  0.3333  0.0000 
Sn:  0.3333  0.6667  0.0000 
Si:  0.0727  0.2870  0.2500 
O:  0.2483  0.1861  0.2500 
O:  0.0892  0.4264  0.1142 
Ba:  0.6667  0.3333  0.5000 
Sn:  0.3333  0.6667  0.5000 
Si:  0.7130  0.7857  0.2500 
O:  0.8139  0.0622  0.2500 
O:  0.5736  0.6628  0.3858 
Si:  0.7130  0.9273  0.7500 
O:  0.8139  0.7517  0.7500 
O:  0.5736  0.9108  0.8858 
Si:  0.2143  0.9273  0.2500 
O:  0.9378  0.7517  0.2500 
O:  0.3372  0.9108  0.1142 
Si:  0.0727  0.7857  0.7500 
O:  0.2483  0.0622  0.7500 
O:  0.0892  0.6628  0.6142 
Si:  0.2143  0.2870  0.7500 
O:  0.9378  0.1861  0.7500 
O:  0.3372  0.4264  0.6142 
O:  0.0892  0.4264  0.3858 
O:  0.3372  0.4264  0.8858 
O:  0.0892  0.6628  0.8858 
O:  0.3372  0.9108  0.3858 
O:  0.5736  0.6628  0.1142 
O:  0.5736  0.9108  0.6142 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
A''2
49
49
49
61
5
E''
61
61
61
61
2.415e+38
0.5
3.745e+38
0.8
6.161e+38
1.3
6
E''
61
61
61
67
2.396e+38
0.5
2.875e+38
0.6
5.271e+38
1.1
7
A'2
68
68
68
68
8
E'
85
85
85
85
6.496e+38
1.4
8.932e+38
1.9
1.543e+39
3.3
9
E'
85
110
110
85
6.497e+38
1.4
4.873e+38
1.0
1.137e+39
2.4
10
E''
122
122
122
122
1.866e+37
0.0
3.124e+37
0.1
4.990e+37
0.1
11
E''
122
122
122
122
1.875e+37
0.0
2.017e+37
0.0
3.892e+37
0.1
12
E''
147
147
147
147
7.950e+37
0.2
1.168e+38
0.3
1.963e+38
0.4
13
E''
147
147
147
147
7.941e+37
0.2
1.017e+38
0.2
1.811e+38
0.4
14
E'
150
150
150
150
6.508e+38
1.4
8.948e+38
1.9
1.546e+39
3.3
15
E'
150
151
151
150
6.508e+38
1.4
4.881e+38
1.0
1.139e+39
2.4
16
A''2
165
165
165
165
17
A'2
183
183
183
183
18
A''1
185
185
185
185
19
E''
192
192
192
192
5.059e+38
1.1
8.421e+38
1.8
1.348e+39
2.9
20
E''
192
192
192
192
5.059e+38
1.1
5.492e+38
1.2
1.055e+39
2.3
21
E''
210
210
210
210
6.490e+36
0.0
7.212e+36
0.0
1.370e+37
0.0
22
E''
210
210
210
210
6.500e+36
0.0
1.066e+37
0.0
1.716e+37
0.0
23
E'
224
224
224
224
2.413e+38
0.5
3.318e+38
0.7
5.731e+38
1.2
24
E'
224
230
230
224
2.413e+38
0.5
1.810e+38
0.4
4.223e+38
0.9
25
E''
230
230
230
230
1.176e+39
2.5
1.347e+39
2.9
2.522e+39
5.4
26
E''
230
231
231
230
1.176e+39
2.5
1.887e+39
4.1
3.063e+39
6.6
27
A'2
247
247
247
247
28
A'1
251
251
251
251
2.468e+40
53.0
3.006e+37
0.1
2.471e+40
53.1
29
A''2
256
256
256
264
30
A''1
264
264
264
286
31
E'
286
286
286
286
3.502e+37
0.1
4.815e+37
0.1
8.317e+37
0.2
32
E'
286
287
287
320
3.502e+37
0.1
2.626e+37
0.1
6.128e+37
0.1
33
E'
321
321
321
321
8.930e+37
0.2
1.228e+38
0.3
2.121e+38
0.5
34
E'
321
322
322
321
8.930e+37
0.2
6.698e+37
0.1
1.563e+38
0.3
35
A'2
322
328
328
322
36
A'1
341
341
341
341
1.875e+39
4.0
1.490e+38
0.3
2.024e+39
4.3
37
E''
368
368
368
368
2.663e+38
0.6
4.252e+38
0.9
6.915e+38
1.5
38
E''
368
368
368
368
2.663e+38
0.6
3.071e+38
0.7
5.734e+38
1.2
39
A''2
371
371
371
372
40
E'
381
381
381
381
7.322e+38
1.6
1.007e+39
2.2
1.739e+39
3.7
41
E'
381
381
381
381
7.322e+38
1.6
5.491e+38
1.2
1.281e+39
2.8
42
E''
381
381
381
381
2.083e+39
4.5
3.515e+39
7.6
5.599e+39
12.0
43
E''
381
387
387
381
2.083e+39
4.5
2.213e+39
4.8
4.297e+39
9.2
44
E'
390
390
390
390
2.175e+38
0.5
2.990e+38
0.6
5.165e+38
1.1
45
E'
390
391
391
390
2.175e+38
0.5
1.631e+38
0.4
3.806e+38
0.8
46
A''1
396
396
396
396
47
E'
422
422
422
422
1.676e+38
0.4
2.305e+38
0.5
3.982e+38
0.9
48
E'
422
442
442
422
1.676e+38
0.4
1.257e+38
0.3
2.934e+38
0.6
49
E'
442
442
442
442
1.738e+39
3.7
2.389e+39
5.1
4.127e+39
8.9
50
E'
442
469
469
442
1.738e+39
3.7
1.303e+39
2.8
3.041e+39
6.5
51
E''
485
485
485
485
1.493e+38
0.3
1.602e+38
0.3
3.095e+38
0.7
52
E''
485
485
485
485
1.493e+38
0.3
2.504e+38
0.5
3.997e+38
0.9
53
A'2
493
493
493
493
54
A'1
505
505
505
505
4.640e+40
99.7
1.398e+38
0.3
4.654e+40
100.0
55
E''
510
510
510
510
4.113e+38
0.9
4.836e+38
1.0
8.949e+38
1.9
56
E''
510
510
510
510
4.113e+38
0.9
6.475e+38
1.4
1.059e+39
2.3
57
A''2
537
537
537
541
58
A'2
548
548
548
548
59
A'1
550
550
550
550
2.778e+40
59.7
7.418e+38
1.6
2.852e+40
61.3
60
A''1
563
563
563
563
61
A'1
605
605
605
605
6.715e+39
14.4
2.158e+37
0.0
6.736e+39
14.5
62
A'2
609
609
609
609
63
E'
712
712
712
712
8.725e+36
0.0
1.200e+37
0.0
2.072e+37
0.0
64
E'
712
714
714
712
8.726e+36
0.0
6.544e+36
0.0
1.527e+37
0.0
65
E'
717
717
717
717
1.943e+38
0.4
2.671e+38
0.6
4.614e+38
1.0
66
E'
717
748
748
717
1.943e+38
0.4
1.457e+38
0.3
3.400e+38
0.7
67
E'
876
876
876
876
1.489e+38
0.3
2.047e+38
0.4
3.537e+38
0.8
68
E'
876
887
887
876
1.489e+38
0.3
1.117e+38
0.2
2.606e+38
0.6
69
E''
899
899
899
899
4.101e+38
0.9
4.927e+38
1.1
9.028e+38
1.9
70
E''
899
899
899
899
4.101e+38
0.9
6.351e+38
1.4
1.045e+39
2.2
71
A'2
909
909
909
909
72
E'
911
911
911
911
2.527e+38
0.5
3.474e+38
0.7
6.001e+38
1.3
73
E'
911
911
911
911
2.527e+38
0.5
1.895e+38
0.4
4.422e+38
1.0
74
A'1
911
924
924
911
1.134e+39
2.4
3.365e+37
0.1
1.168e+39
2.5
75
A''2
924
931
931
945
76
E''
945
945
945
945
2.198e+39
4.7
2.341e+39
5.0
4.539e+39
9.8
77
E''
945
945
945
971
2.198e+39
4.7
3.702e+39
8.0
5.900e+39
12.7
78
A'2
971
971
971
973
79
E'
973
973
973
973
3.626e+36
0.0
4.986e+36
0.0
8.612e+36
0.0
80
E'
973
974
974
976
3.626e+36
0.0
2.719e+36
0.0
6.345e+36
0.0
81
E'
976
976
976
976
2.083e+37
0.0
2.864e+37
0.1
4.947e+37
0.1
82
E'
976
1001
1001
1001
2.083e+37
0.0
1.562e+37
0.0
3.645e+37
0.1
83
A'1
1001
1046
1046
1054
5.005e+39
10.8
6.347e+38
1.4
5.640e+39
12.1
84
A''1
1077
1077
1077
1077
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.