-    BAZIRITE     -    BaZrSi3O9

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD. Tetter norm-conserving pseudopotential for Ba and Zr. 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  188  P-6c2 
Lattice parameters (Å):  6.7420  6.7420  9.9300 
Angles (°):  90  90  120 

Symmetry (theoretical): 

Space group:  188  P-6c2 
Lattice parameters (Å):  6.7135  6.7135  10.0145 
Angles (°):  90  90  120 

Cell contents: 

Number of atoms:  28 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ba:  0.6667  0.3333  0.0000 
Zr:  0.3333  0.6667  0.0000 
Si:  0.0558  0.2803  0.2500 
O:  0.2452  0.1967  0.2500 
O:  0.0723  0.4203  0.1173 
Ba:  0.6667  0.3333  0.5000 
Zr:  0.3333  0.6667  0.5000 
Si:  0.7197  0.7756  0.2500 
O:  0.8033  0.0485  0.2500 
O:  0.5797  0.6520  0.3827 
Si:  0.7197  0.9442  0.7500 
O:  0.8033  0.7548  0.7500 
O:  0.5797  0.9277  0.8827 
Si:  0.2244  0.9442  0.2500 
O:  0.9515  0.7548  0.2500 
O:  0.3480  0.9277  0.1173 
Si:  0.0558  0.7756  0.7500 
O:  0.2452  0.0485  0.7500 
O:  0.0723  0.6520  0.6173 
Si:  0.2244  0.2803  0.7500 
O:  0.9515  0.1967  0.7500 
O:  0.3480  0.4203  0.6173 
O:  0.0723  0.4203  0.3827 
O:  0.3480  0.4203  0.8827 
O:  0.0723  0.6520  0.8827 
O:  0.3480  0.9277  0.3827 
O:  0.5797  0.6520  0.1173 
O:  0.5797  0.9277  0.6173 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
A'2
61
61
61
61
5
A''2
63
63
63
72
6
E''
73
73
73
73
3.359e+38
1.0
4.619e+38
1.3
7.978e+38
2.3
7
E''
73
73
73
73
3.359e+38
1.0
4.619e+38
1.3
7.978e+38
2.3
8
E'
110
110
110
110
6.799e+38
2.0
9.349e+38
2.7
1.615e+39
4.7
9
E'
110
128
128
110
6.799e+38
2.0
5.100e+38
1.5
1.190e+39
3.4
10
E''
129
129
129
129
7.646e+38
2.2
1.264e+39
3.7
2.029e+39
5.9
11
E''
129
129
129
129
7.646e+38
2.2
8.383e+38
2.4
1.603e+39
4.6
12
E''
135
135
135
135
2.745e+38
0.8
4.200e+38
1.2
6.945e+38
2.0
13
E''
135
135
135
135
2.745e+38
0.8
3.350e+38
1.0
6.095e+38
1.8
14
A''2
153
153
153
153
15
E'
154
154
154
154
2.028e+39
5.9
2.789e+39
8.1
4.817e+39
13.9
16
E'
154
157
157
154
2.028e+39
5.9
1.521e+39
4.4
3.550e+39
10.3
17
A''1
167
167
167
167
18
A'2
172
172
172
172
19
E''
174
174
174
174
1.846e+39
5.3
3.103e+39
9.0
4.949e+39
14.3
20
E''
174
174
174
174
1.846e+39
5.3
1.972e+39
5.7
3.818e+39
11.0
21
E''
194
194
194
194
4.030e+39
11.7
4.293e+39
12.4
8.323e+39
24.1
22
E''
194
194
194
194
4.030e+39
11.7
6.789e+39
19.6
1.082e+40
31.3
23
E''
211
211
211
211
2.521e+37
0.1
3.030e+37
0.1
5.551e+37
0.2
24
E''
211
211
211
211
2.521e+37
0.1
3.901e+37
0.1
6.422e+37
0.2
25
E'
231
231
231
231
4.546e+38
1.3
6.251e+38
1.8
1.080e+39
3.1
26
E'
231
239
239
231
4.546e+38
1.3
3.410e+38
1.0
7.956e+38
2.3
27
A''1
241
241
241
241
28
A'1
252
252
252
252
2.402e+40
69.5
1.665e+38
0.5
2.419e+40
70.0
29
A''2
257
257
257
275
30
A'2
275
275
275
281
31
E'
281
281
281
281
6.222e+36
0.0
8.555e+36
0.0
1.478e+37
0.0
32
E'
281
281
281
306
6.222e+36
0.0
4.667e+36
0.0
1.089e+37
0.0
33
A'2
306
306
306
306
34
E'
307
307
307
307
6.856e+38
2.0
9.426e+38
2.7
1.628e+39
4.7
35
E'
307
312
312
307
6.856e+38
2.0
5.142e+38
1.5
1.200e+39
3.5
36
A'1
328
328
328
328
2.765e+39
8.0
2.728e+38
0.8
3.038e+39
8.8
37
A''2
341
341
341
351
38
E''
351
351
351
351
3.627e+39
10.5
4.856e+39
14.0
8.484e+39
24.5
39
E''
351
351
351
364
3.627e+39
10.5
5.119e+39
14.8
8.746e+39
25.3
40
E'
364
364
364
364
3.268e+39
9.5
4.493e+39
13.0
7.760e+39
22.5
41
E'
364
368
368
368
3.268e+39
9.5
2.451e+39
7.1
5.718e+39
16.5
42
E''
368
368
368
368
5.036e+39
14.6
7.738e+39
22.4
1.277e+40
37.0
43
E''
368
378
378
376
5.036e+39
14.6
6.111e+39
17.7
1.115e+40
32.2
44
E'
378
378
378
378
1.240e+38
0.4
1.706e+38
0.5
2.946e+38
0.9
45
E'
378
389
389
378
1.240e+38
0.4
9.303e+37
0.3
2.171e+38
0.6
46
A''1
413
413
413
413
47
E'
436
436
436
436
9.869e+37
0.3
1.357e+38
0.4
2.344e+38
0.7
48
E'
436
451
451
436
9.869e+37
0.3
7.402e+37
0.2
1.727e+38
0.5
49
E'
452
452
452
452
5.134e+39
14.9
7.059e+39
20.4
1.219e+40
35.3
50
E'
452
469
469
452
5.134e+39
14.9
3.850e+39
11.1
8.984e+39
26.0
51
A'2
469
489
489
469
52
E''
497
497
497
497
1.892e+39
5.5
2.020e+39
5.8
3.912e+39
11.3
53
E''
497
497
497
497
1.892e+39
5.5
3.183e+39
9.2
5.075e+39
14.7
54
E''
508
508
508
508
9.706e+38
2.8
1.448e+39
4.2
2.418e+39
7.0
55
E''
508
508
508
508
9.706e+38
2.8
1.222e+39
3.5
2.192e+39
6.3
56
A'1
513
513
513
513
1.582e+40
45.8
6.675e+36
0.0
1.583e+40
45.8
57
A''2
539
539
539
539
58
A'2
557
557
557
557
59
A'1
560
560
560
560
3.402e+40
98.4
5.428e+38
1.6
3.457e+40
100.0
60
A''1
577
577
577
577
61
A'1
624
624
624
624
8.227e+39
23.8
1.132e+38
0.3
8.340e+39
24.1
62
A'2
628
628
628
628
63
E'
736
736
736
736
3.082e+38
0.9
4.237e+38
1.2
7.319e+38
2.1
64
E'
736
737
737
736
3.082e+38
0.9
2.311e+38
0.7
5.393e+38
1.6
65
E'
737
737
737
737
8.532e+36
0.0
1.173e+37
0.0
2.026e+37
0.1
66
E'
737
771
771
737
8.532e+36
0.0
6.399e+36
0.0
1.493e+37
0.0
67
E'
905
905
905
905
8.548e+37
0.2
1.175e+38
0.3
2.030e+38
0.6
68
E'
905
911
911
905
8.548e+37
0.2
6.411e+37
0.2
1.496e+38
0.4
69
A''2
911
917
917
917
70
E'
917
917
917
917
3.220e+39
9.3
4.428e+39
12.8
7.648e+39
22.1
71
E'
917
930
930
930
3.220e+39
9.3
2.415e+39
7.0
5.635e+39
16.3
72
E''
930
930
930
930
2.315e+39
6.7
2.509e+39
7.3
4.824e+39
14.0
73
E''
930
937
937
937
2.315e+39
6.7
3.858e+39
11.2
6.174e+39
17.9
74
E''
937
937
937
937
1.238e+40
35.8
1.658e+40
48.0
2.896e+40
83.8
75
E''
937
942
942
960
1.238e+40
35.8
1.746e+40
50.5
2.983e+40
86.3
76
A'2
960
960
960
962
77
A'1
962
962
962
988
5.881e+38
1.7
2.306e+36
0.0
5.904e+38
1.7
78
A'2
988
988
988
1011
79
E'
1011
1011
1011
1011
1.721e+38
0.5
2.367e+38
0.7
4.088e+38
1.2
80
E'
1011
1012
1012
1014
1.721e+38
0.5
1.291e+38
0.4
3.012e+38
0.9
81
E'
1014
1014
1014
1014
4.985e+37
0.1
6.854e+37
0.2
1.184e+38
0.3
82
E'
1014
1024
1024
1024
4.985e+37
0.1
3.739e+37
0.1
8.724e+37
0.3
83
A'1
1024
1083
1083
1077
5.129e+39
14.8
1.241e+37
0.0
5.141e+39
14.9
84
A''1
1102
1102
1102
1102
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.