-    STIBNITE     -    Sb2S3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pnma 
Lattice parameters (Å):  11.2820  3.8296  11.2250 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  62  Pnma 
Lattice parameters (Å):  11.5378  3.8180  11.0094 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sb:  0.4726  0.2500  0.3258 
Sb:  0.3534  0.7500  0.0338 
S:  0.2971  0.2500  0.1895 
S:  0.5467  0.7500  0.1244 
S:  0.3775  0.7500  0.4393 
Sb:  0.0274  0.7500  0.8258 
Sb:  0.1466  0.2500  0.5338 
S:  0.2029  0.7500  0.6895 
S:  0.9533  0.2500  0.6244 
S:  0.1225  0.2500  0.9393 
Sb:  0.5274  0.7500  0.6742 
Sb:  0.6466  0.2500  0.9662 
S:  0.7029  0.7500  0.8105 
S:  0.4533  0.2500  0.8756 
S:  0.6225  0.2500  0.5607 
Sb:  0.9726  0.2500  0.1742 
Sb:  0.8534  0.7500  0.4662 
S:  0.7971  0.2500  0.3105 
S:  0.0467  0.7500  0.3756 
S:  0.8775  0.7500  0.0607 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Au
14
14
14
14
5
B3u
30
31
30
30
6
B1u
33
33
33
36
7
B2g
40
40
40
40
4.696e+41
2.2
6.457e+41
3.1
1.115e+42
5.3
8
B1g
40
40
40
40
2.821e+41
1.3
3.879e+41
1.8
6.701e+41
3.2
9
B3g
41
41
41
41
2.064e+42
9.8
2.839e+42
13.5
4.903e+42
23.3
10
A1g
43
43
43
43
3.061e+42
14.6
2.042e+42
9.7
5.104e+42
24.3
11
B2u
51
51
55
51
12
Au
55
55
56
55
13
B1u
56
56
59
56
14
B3u
61
62
61
61
15
B3g
62
62
62
62
1.012e+42
4.8
1.508e+42
7.2
2.519e+42
12.0
16
B1g
62
65
62
62
1.116e+42
5.3
1.418e+42
6.8
2.535e+42
12.1
17
A1g
71
71
71
71
3.632e+41
1.7
2.466e+41
1.2
6.098e+41
2.9
18
B3u
75
76
75
75
19
B1u
81
81
81
86
20
B2g
86
86
86
100
5.120e+41
2.4
7.040e+41
3.4
1.216e+42
5.8
21
A1g
100
100
100
110
5.939e+41
2.8
7.426e+39
0.0
6.013e+41
2.9
22
B2g
110
110
110
110
5.580e+39
0.0
7.672e+39
0.0
1.325e+40
0.1
23
B2g
116
116
116
116
5.669e+41
2.7
7.795e+41
3.7
1.346e+42
6.4
24
B2u
117
117
119
117
25
Ag
119
119
119
119
4.432e+41
2.1
1.410e+41
0.7
5.842e+41
2.8
26
Ag
119
119
122
122
2.545e+42
12.1
8.093e+41
3.9
3.354e+42
16.0
27
Au
122
122
124
124
28
B3u
124
124
145
145
29
B2g
145
145
146
146
1.428e+42
6.8
1.964e+42
9.3
3.392e+42
16.1
30
A1g
146
146
182
148
1.122e+42
5.3
5.064e+41
2.4
1.628e+42
7.7
31
A1g
182
182
185
182
6.769e+42
32.2
7.506e+41
3.6
7.520e+42
35.8
32
B1g
185
185
188
185
9.188e+41
4.4
1.263e+42
6.0
2.182e+42
10.4
33
B2g
188
188
192
188
3.884e+40
0.2
5.340e+40
0.3
9.224e+40
0.4
34
B3g
192
192
194
192
1.876e+42
8.9
2.579e+42
12.3
4.454e+42
21.2
35
B3g
194
194
197
194
6.202e+42
29.5
8.527e+42
40.6
1.473e+43
70.1
36
B1g
197
197
199
197
5.555e+41
2.6
7.638e+41
3.6
1.319e+42
6.3
37
B3u
201
202
201
201
38
B1u
202
202
202
202
39
Au
202
206
202
206
40
B2u
206
209
209
215
41
Au
215
215
215
218
42
B2u
218
218
226
223
43
B3g
226
226
226
226
2.758e+42
13.1
4.653e+42
22.1
7.411e+42
35.3
44
B1g
226
226
241
226
2.761e+42
13.1
2.937e+42
14.0
5.698e+42
27.1
45
B3u
241
242
242
241
46
B1u
242
248
248
248
47
A1g
248
248
254
248
1.189e+42
5.7
3.641e+39
0.0
1.193e+42
5.7
48
B2g
254
254
254
254
1.642e+40
0.1
2.258e+40
0.1
3.899e+40
0.2
49
B2g
254
254
258
258
2.191e+40
0.1
3.013e+40
0.1
5.205e+40
0.2
50
B3u
258
261
270
270
51
A1g
270
270
272
283
2.088e+43
99.4
1.358e+41
0.6
2.101e+43
100.0
52
B2g
283
283
283
284
3.182e+40
0.2
4.375e+40
0.2
7.557e+40
0.4
53
A1g
284
284
284
288
1.406e+43
66.9
5.625e+41
2.7
1.463e+43
69.6
54
B1u
292
292
292
295
55
B2g
296
296
296
296
1.998e+42
9.5
2.747e+42
13.1
4.744e+42
22.6
56
B3u
299
300
299
299
57
A1g
304
304
304
304
1.300e+43
61.9
2.355e+41
1.1
1.323e+43
63.0
58
B2g
307
307
307
307
2.932e+41
1.4
4.032e+41
1.9
6.964e+41
3.3
59
B3u
320
330
320
320
60
B1u
330
332
330
332
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.