-    STRONTIANITE     -    SrCO3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pmcn 
Lattice parameters (Å):  5.1075  8.4138  6.0269 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  62  Pmcn 
Lattice parameters (Å):  5.0881  8.4367  6.0335 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sr:  0.2500  0.4161  0.7555 
C:  0.2500  0.7572  0.9192 
O:  0.2500  0.9088  0.9117 
O:  0.4681  0.6810  0.9179 
Sr:  0.7500  0.9161  0.7445 
C:  0.7500  0.2572  0.5808 
O:  0.7500  0.4088  0.5883 
O:  0.5319  0.1810  0.5821 
Sr:  0.7500  0.5839  0.2445 
C:  0.7500  0.2428  0.0808 
O:  0.7500  0.0912  0.0883 
O:  0.9681  0.3190  0.0821 
Sr:  0.2500  0.0839  0.2555 
C:  0.2500  0.7428  0.4192 
O:  0.2500  0.5912  0.4117 
O:  0.0319  0.8190  0.4179 
O:  0.5319  0.3190  0.0821 
O:  0.4681  0.8190  0.4179 
O:  0.0319  0.6810  0.9179 
O:  0.9681  0.1810  0.5821 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B2g
94
94
94
94
1.318e+38
0.1
1.812e+38
0.2
3.129e+38
0.3
5
B2u
97
97
97
97
6
Au
98
98
98
98
7
A1g
102
102
102
102
1.469e+39
1.4
1.020e+39
1.0
2.489e+39
2.4
8
B1g
108
108
108
108
3.458e+39
3.3
4.754e+39
4.6
8.212e+39
7.9
9
B3u
117
117
117
117
10
B3g
117
120
117
117
1.568e+39
1.5
2.156e+39
2.1
3.724e+39
3.6
11
Au
120
121
120
120
12
A1g
125
125
125
125
1.342e+39
1.3
8.439e+38
0.8
2.186e+39
2.1
13
B2g
133
133
133
133
4.370e+40
42.1
6.008e+40
57.9
1.038e+41
100.0
14
B1g
137
137
137
137
2.869e+39
2.8
3.946e+39
3.8
6.815e+39
6.6
15
A1g
148
148
148
148
2.746e+39
2.6
2.051e+39
2.0
4.797e+39
4.6
16
B3u
148
148
148
148
17
Au
151
151
151
151
18
B1g
153
153
153
153
6.790e+38
0.7
9.337e+38
0.9
1.613e+39
1.6
19
B1u
153
153
153
156
20
B2u
156
156
158
158
21
A1g
158
158
163
162
6.035e+39
5.8
4.077e+39
3.9
1.011e+40
9.7
22
B1u
163
163
165
165
23
B3g
165
165
168
168
2.122e+40
20.5
2.918e+40
28.1
5.040e+40
48.6
24
B3g
168
168
169
171
7.323e+39
7.1
1.007e+40
9.7
1.739e+40
16.8
25
B2g
171
171
171
172
1.911e+39
1.8
2.628e+39
2.5
4.538e+39
4.4
26
B3u
172
180
172
175
27
B1u
180
184
180
184
28
B2g
184
195
184
195
1.485e+39
1.4
2.042e+39
2.0
3.528e+39
3.4
29
B2u
195
210
210
210
30
B3g
210
216
216
216
8.292e+38
0.8
1.140e+39
1.1
1.969e+39
1.9
31
Au
216
229
229
229
32
B1g
229
229
229
229
5.901e+39
5.7
8.113e+39
7.8
1.401e+40
13.5
33
B3g
229
240
240
240
4.582e+39
4.4
6.300e+39
6.1
1.088e+40
10.5
34
A1g
240
242
242
242
5.334e+39
5.1
3.946e+39
3.8
9.280e+39
8.9
35
B2u
242
248
248
247
36
B1u
248
276
283
271
37
B1g
679
679
679
679
2.634e+39
2.5
3.622e+39
3.5
6.257e+39
6.0
38
B1g
679
679
679
679
6.135e+37
0.1
8.435e+37
0.1
1.457e+38
0.1
39
A1g
682
682
682
682
5.215e+39
5.0
3.779e+39
3.6
8.994e+39
8.7
40
B3u
683
684
683
683
41
B2g
685
685
685
685
6.758e+38
0.7
9.292e+38
0.9
1.605e+39
1.5
42
B2u
687
687
689
687
43
B3g
692
692
692
692
6.222e+38
0.6
8.555e+38
0.8
1.478e+39
1.4
44
B1u
695
695
695
695
45
B1u
840
840
840
841
46
A1g
841
841
841
854
7.258e+36
0.0
5.429e+36
0.0
1.269e+37
0.0
47
B3g
875
875
875
875
2.032e+36
0.0
2.794e+36
0.0
4.827e+36
0.0
48
B2u
876
876
876
876
49
B3g
1070
1070
1070
1070
3.072e+36
0.0
4.224e+36
0.0
7.296e+36
0.0
50
B2u
1071
1071
1071
1071
51
B1u
1072
1072
1072
1072
52
A1g
1073
1073
1073
1073
8.836e+40
85.1
1.575e+39
1.5
8.994e+40
86.7
53
Au
1388
1388
1388
1388
54
B1g
1407
1407
1407
1407
2.619e+37
0.0
3.601e+37
0.0
6.220e+37
0.1
55
B1u
1430
1430
1430
1430
56
B3u
1433
1434
1433
1433
57
A1g
1434
1442
1434
1434
3.786e+38
0.4
7.179e+37
0.1
4.504e+38
0.4
58
B2u
1442
1443
1443
1442
59
B2g
1443
1538
1540
1443
3.096e+39
3.0
4.257e+39
4.1
7.352e+39
7.1
60
B3g
1540
1540
1549
1540
2.939e+39
2.8
4.041e+39
3.9
6.980e+39
6.7
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.