-    DIAMOND (10HZ)     -    C

 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  194  P6_3/mmc 
Lattice parameters (Å):       
Angles (°):  90  90  120 

Symmetry (theoretical): 

Space group:  194  P6_3/mmc 
Lattice parameters (Å):  2.4849  2.4849  20.3721 
Angles (°):  90  90  120 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

C:  0.3333  0.6667  0.9993 
C:  0.3333  0.6667  0.0741 
C:  1.0000  1.0000  0.0991 
C:  1.0000  1.0000  0.1738 
C:  0.6667  0.3333  0.1989 
C:  0.6667  0.3333  0.2748 
C:  1.0000  1.0000  0.3000 
C:  1.0000  1.0000  0.3747 
C:  0.3333  0.6667  0.3996 
C:  0.3333  0.6667  0.4744 
C:  0.6667  0.3333  0.4993 
C:  0.6667  0.3333  0.5741 
C:  1.0000  1.0000  0.5991 
C:  1.0000  1.0000  0.6738 
C:  0.3333  0.6667  0.6989 
C:  0.3333  0.6667  0.7748 
C:  1.0000  1.0000  0.8000 
C:  1.0000  1.0000  0.8747 
C:  0.6667  0.3333  0.8996 
C:  0.6667  0.3333  0.9744 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
E2u
186
186
186
186
5
E2u
186
186
186
186
6
E2g
191
191
191
191
8.971e+36
0.0
1.157e+37
0.0
2.054e+37
0.0
7
E2g
191
191
191
191
8.971e+36
0.0
7.498e+36
0.0
1.647e+37
0.0
8
B1g
302
302
302
302
9
B2u
305
305
305
305
10
E1g
344
344
344
344
3.579e+38
0.1
3.936e+38
0.1
7.515e+38
0.2
11
E1g
344
344
344
344
3.579e+38
0.1
5.905e+38
0.2
9.484e+38
0.3
12
E1u
352
352
352
352
13
E1u
352
352
352
352
14
E2u
459
459
459
459
15
E2u
459
459
459
459
16
E2g
467
467
467
467
6.978e+36
0.0
7.186e+36
0.0
1.416e+37
0.0
17
E2g
467
467
467
467
6.978e+36
0.0
7.642e+36
0.0
1.462e+37
0.0
18
E1g
526
526
526
526
6.466e+37
0.0
8.890e+37
0.0
1.536e+38
0.0
19
E1g
526
526
526
526
6.466e+37
0.0
8.890e+37
0.0
1.536e+38
0.0
20
E1u
535
535
535
535
21
E1u
535
535
535
535
22
E2u
552
552
552
552
23
E2u
552
552
552
552
24
A2u
583
583
583
583
25
A1g
587
587
587
587
1.946e+39
0.6
3.038e+37
0.0
1.976e+39
0.6
26
B1g
822
822
822
822
27
B2u
825
825
825
825
28
A2u
1000
1000
1000
1000
29
A1g
1001
1001
1001
1001
6.416e+39
1.9
6.173e+38
0.2
7.034e+39
2.1
30
B2u
1078
1078
1078
1078
31
E2g
1232
1232
1232
1232
8.274e+39
2.5
1.086e+40
3.3
1.913e+40
5.7
32
E2g
1232
1232
1232
1232
8.274e+39
2.5
6.725e+39
2.0
1.500e+40
4.5
33
E1u
1235
1235
1235
1235
34
E1u
1235
1235
1235
1235
35
E1g
1246
1246
1246
1246
1.909e+38
0.1
2.361e+38
0.1
4.270e+38
0.1
36
E1g
1246
1246
1246
1246
1.909e+38
0.1
2.887e+38
0.1
4.796e+38
0.1
37
E2g
1260
1260
1260
1260
1.216e+40
3.6
9.261e+39
2.8
2.142e+40
6.4
38
E2g
1260
1260
1260
1260
1.216e+40
3.6
1.657e+40
5.0
2.873e+40
8.6
39
E2u
1265
1265
1265
1265
40
E2u
1265
1265
1265
1265
41
B1g
1271
1271
1271
1271
42
E1u
1290
1290
1290
1290
43
E1u
1290
1290
1290
1290
44
E1g
1292
1292
1292
1292
2.872e+38
0.1
3.949e+38
0.1
6.821e+38
0.2
45
E1g
1292
1292
1292
1292
2.872e+38
0.1
3.949e+38
0.1
6.821e+38
0.2
46
A1g
1293
1293
1293
1293
3.729e+40
11.2
2.218e+40
6.6
5.947e+40
17.8
47
A2u
1298
1298
1298
1298
48
B2u
1308
1308
1308
1308
49
E2u
1317
1317
1317
1317
50
E2u
1317
1317
1317
1317
51
E2g
1320
1320
1320
1320
1.445e+41
43.3
1.176e+41
35.2
2.621e+41
78.5
52
E2g
1320
1320
1320
1320
1.445e+41
43.3
1.894e+41
56.7
3.339e+41
100.0
53
A1g
1321
1321
1321
1321
1.483e+41
44.4
1.073e+41
32.1
2.555e+41
76.5
54
E1g
1330
1330
1330
1330
8.601e+40
25.8
9.803e+40
29.4
1.840e+41
55.1
55
E1g
1330
1330
1330
1330
8.601e+40
25.8
1.385e+41
41.5
2.245e+41
67.2
56
B1g
1332
1332
1332
1332
57
B1g
1336
1336
1336
1336
58
B2u
1336
1336
1336
1336
59
A1g
1337
1337
1337
1337
1.115e+41
33.4
8.355e+40
25.0
1.951e+41
58.4
60
A2u
1342
1342
1342
1342
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.