-    BARENTSITE     -    Na7Al(CO3)2(HCO3)2F4

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  6.4720  6.7350  8.8060 
Angles (°):  92.50  97.33  119.32 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  6.2289  6.5534  8.6235 
Angles (°):  92.60  97.94  120.15 

Cell contents: 

Number of atoms:  30 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Na:  0.0000  0.0000  0.0000 
Na:  0.5000  0.5000  0.0000 
Na:  0.5000  0.0000  0.0000 
Na:  0.7265  0.3845  0.3565 
Na:  0.7778  0.1189  0.6425 
Al:  0.0000  0.5000  0.0000 
H:  0.2442  0.2415  0.5003 
C:  0.2862  0.1130  0.7009 
C:  0.2054  0.3902  0.2875 
O:  0.3501  0.9888  0.6270 
O:  0.2071  0.2382  0.6188 
O:  0.2898  0.1306  0.8463 
O:  0.2865  0.2571  0.3440 
O:  0.1799  0.3925  0.1363 
O:  0.1540  0.5104  0.3758 
F:  0.7496  0.3902  0.1085 
F:  0.8438  0.2098  0.8922 
Na:  0.2735  0.6155  0.6435 
Na:  0.2222  0.8811  0.3575 
H:  0.7558  0.7585  0.4997 
C:  0.7138  0.8870  0.2991 
C:  0.7946  0.6098  0.7125 
O:  0.6499  0.0112  0.3730 
O:  0.7929  0.7618  0.3812 
O:  0.7102  0.8694  0.1537 
O:  0.7135  0.7429  0.6560 
O:  0.8201  0.6075  0.8637 
O:  0.8460  0.4896  0.6242 
F:  0.2504  0.6098  0.8915 
F:  0.1562  0.7902  0.1078 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Au
62
62
63
62
5
Ag
100
100
100
100
1.476e+39
3.7
1.676e+39
4.2
3.152e+39
7.9
6
Au
110
112
110
111
7
Au
118
120
119
118
8
Au
126
127
126
126
9
Ag
132
132
132
132
1.060e+38
0.3
9.749e+37
0.2
2.035e+38
0.5
10
Au
132
134
133
132
11
Ag
138
138
138
138
2.339e+38
0.6
1.448e+38
0.4
3.787e+38
1.0
12
Ag
144
144
144
144
2.499e+39
6.3
2.002e+39
5.0
4.501e+39
11.3
13
Au
149
150
149
149
14
Au
151
151
152
154
15
Ag
154
154
154
154
3.753e+38
0.9
3.498e+38
0.9
7.251e+38
1.8
16
Au
156
157
157
157
17
Ag
159
159
159
159
4.569e+39
11.5
3.847e+39
9.7
8.416e+39
21.2
18
Ag
177
177
177
177
2.228e+39
5.6
1.841e+39
4.6
4.069e+39
10.2
19
Au
180
180
180
180
20
Au
182
182
182
186
21
Ag
186
186
186
186
1.569e+39
3.9
1.692e+39
4.3
3.261e+39
8.2
22
Au
187
187
187
187
23
Ag
194
194
194
194
3.508e+38
0.9
3.647e+38
0.9
7.154e+38
1.8
24
Au
198
201
201
198
25
Ag
201
205
202
201
7.026e+38
1.8
4.314e+38
1.1
1.134e+39
2.9
26
Au
209
211
209
211
27
Ag
211
216
211
213
2.362e+38
0.6
2.366e+38
0.6
4.727e+38
1.2
28
Ag
219
219
219
219
1.292e+39
3.2
1.637e+39
4.1
2.930e+39
7.4
29
Au
223
224
224
225
30
Ag
225
225
225
225
1.858e+39
4.7
1.932e+39
4.9
3.790e+39
9.5
31
Ag
234
234
234
234
2.014e+38
0.5
2.007e+38
0.5
4.021e+38
1.0
32
Au
237
237
237
237
33
Au
239
239
240
239
34
Au
241
243
242
244
35
Au
251
253
254
251
36
Ag
255
255
255
255
1.670e+38
0.4
1.714e+38
0.4
3.384e+38
0.9
37
Au
261
263
262
261
38
Au
266
268
272
267
39
Ag
272
272
272
272
40
Au
273
275
279
274
5.712e+37
0.1
4.025e+37
0.1
9.737e+37
0.2
41
Ag
280
280
280
280
1.906e+38
0.5
2.987e+38
0.8
4.893e+38
1.2
42
Au
284
287
287
285
43
Ag
287
289
291
287
1.994e+38
0.5
2.578e+38
0.6
4.572e+38
1.1
44
Au
294
294
296
302
45
Au
302
311
311
309
46
Au
312
316
316
312
47
Ag
316
318
316
316
5.953e+37
0.1
5.703e+37
0.1
1.166e+38
0.3
48
Au
330
333
330
333
49
Ag
338
338
338
338
3.642e+38
0.9
4.760e+38
1.2
8.402e+38
2.1
50
Au
344
344
346
348
51
Ag
355
355
355
355
3.281e+38
0.8
1.794e+38
0.5
5.075e+38
1.3
52
Ag
359
359
359
359
2.148e+38
0.5
2.711e+38
0.7
4.859e+38
1.2
53
Au
362
367
365
365
54
Au
392
393
396
395
55
Ag
409
409
409
409
2.492e+38
0.6
2.560e+38
0.6
5.052e+38
1.3
56
Au
414
427
425
427
57
Au
427
446
436
477
58
Ag
504
504
504
504
3.180e+39
8.0
1.313e+38
0.3
3.311e+39
8.3
59
Au
594
599
594
602
60
Au
603
611
620
614
61
Au
669
670
670
670
62
Ag
670
670
672
675
1.622e+39
4.1
1.617e+39
4.1
3.239e+39
8.1
63
Ag
677
677
677
677
5.885e+38
1.5
7.602e+38
1.9
1.349e+39
3.4
64
Au
686
687
688
687
65
Ag
705
705
705
705
9.478e+38
2.4
7.751e+38
1.9
1.723e+39
4.3
66
Au
708
709
709
708
67
Ag
739
739
739
739
1.981e+39
5.0
1.821e+39
4.6
3.801e+39
9.6
68
Au
746
746
747
748
69
Au
822
824
824
822
70
Ag
824
826
830
824
3.365e+38
0.8
1.806e+38
0.5
5.171e+38
1.3
71
Ag
849
849
849
849
5.687e+37
0.1
5.139e+37
0.1
1.083e+38
0.3
72
Au
853
853
853
853
73
Au
1052
1054
1053
1052
74
Ag
1054
1054
1054
1054
1.351e+40
34.0
5.023e+38
1.3
1.401e+40
35.2
75
Ag
1091
1091
1091
1091
2.691e+40
67.6
1.320e+39
3.3
2.823e+40
71.0
76
Au
1092
1092
1092
1093
77
Au
1140
1142
1148
1141
78
Ag
1183
1183
1183
1183
4.954e+38
1.2
1.547e+38
0.4
6.500e+38
1.6
79
Ag
1286
1286
1286
1286
1.797e+40
45.2
2.801e+39
7.0
2.078e+40
52.2
80
Au
1312
1341
1369
1376
81
Au
1405
1405
1405
1419
82
Ag
1443
1443
1443
1443
1.329e+39
3.3
4.670e+38
1.2
1.796e+39
4.5
83
Au
1484
1485
1485
1485
84
Ag
1485
1490
1486
1514
1.094e+39
2.7
5.034e+38
1.3
1.597e+39
4.0
85
Au
1540
1543
1546
1541
86
Ag
1580
1580
1580
1580
2.701e+39
6.8
2.859e+39
7.2
5.560e+39
14.0
87
Au
1668
1683
1677
1688
88
Ag
1688
1688
1688
1688
1.356e+39
3.4
1.298e+39
3.3
2.655e+39
6.7
89
Ag
2028
2028
2028
2028
2.654e+40
66.7
1.325e+40
33.3
3.978e+40
100.0
90
Au
2119
2122
2126
2220
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.