-    LEITEITE     -    ZnAs2O4

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  14  P2_1/c 
Lattice parameters (Å):  4.5420  5.0220  17.5970 
Angles (°):  90  90.81  90 

Symmetry (theoretical): 

Space group:  14  P2_1/c 
Lattice parameters (Å):  4.4400  4.9558  17.2611 
Angles (°):  90  90.66  90 

Cell contents: 

Number of atoms:  28 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

As:  0.9924  0.2196  0.9101 
As:  0.4905  0.7686  0.9123 
Zn:  0.2540  0.4885  0.7515 
O:  0.5978  0.1233  0.9160 
O:  0.0960  0.8647  0.9200 
O:  0.0023  0.2367  0.8080 
O:  0.5082  0.7364  0.8102 
As:  0.0076  0.7196  0.5899 
As:  0.5095  0.2686  0.5877 
Zn:  0.7460  0.9885  0.7485 
O:  0.4022  0.6233  0.5840 
O:  0.9040  0.3647  0.5800 
O:  0.9977  0.7367  0.6920 
O:  0.4918  0.2364  0.6898 
As:  0.0076  0.7804  0.0899 
As:  0.5095  0.2314  0.0877 
Zn:  0.7460  0.5115  0.2485 
O:  0.4022  0.8767  0.0840 
O:  0.9040  0.1353  0.0800 
O:  0.9977  0.7633  0.1920 
O:  0.4918  0.2636  0.1898 
As:  0.9924  0.2804  0.4101 
As:  0.4905  0.7314  0.4123 
Zn:  0.2540  0.0115  0.2515 
O:  0.5978  0.3767  0.4160 
O:  0.0960  0.6353  0.4200 
O:  0.0023  0.2633  0.3080 
O:  0.5082  0.7636  0.3102 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Ag
26
26
26
26
3.666e+38
0.1
4.366e+38
0.1
8.032e+38
0.1
5
Bg
31
31
31
31
2.304e+38
0.0
3.546e+38
0.1
5.850e+38
0.1
6
Bu
43
44
43
43
7
Au
49
49
50
49
8
Bg
53
53
53
53
3.530e+37
0.0
5.956e+37
0.0
9.486e+37
0.0
9
Bg
60
60
60
60
7.921e+39
1.1
1.153e+40
1.6
1.945e+40
2.8
10
Ag
64
64
64
64
1.042e+40
1.5
1.386e+40
2.0
2.429e+40
3.4
11
Au
84
84
84
84
12
Ag
90
90
90
90
3.588e+39
0.5
2.772e+39
0.4
6.360e+39
0.9
13
Bu
92
96
92
93
14
Bg
98
98
98
98
1.769e+38
0.0
1.942e+38
0.0
3.711e+38
0.1
15
Au
117
117
118
117
16
Ag
118
118
118
118
2.438e+39
0.3
3.141e+37
0.0
2.470e+39
0.4
17
Au
120
120
120
120
18
Ag
123
123
123
123
6.081e+40
8.6
1.884e+40
2.7
7.965e+40
11.3
19
Bu
130
130
130
131
20
Bg
131
131
131
133
4.190e+38
0.1
6.673e+38
0.1
1.086e+39
0.2
21
Au
145
145
147
145
22
Ag
149
149
149
149
2.645e+41
37.5
2.603e+40
3.7
2.906e+41
41.2
23
Ag
160
160
160
160
8.677e+39
1.2
9.053e+38
0.1
9.582e+39
1.4
24
Au
160
160
162
160
2.828e+40
4.0
2.952e+39
0.4
3.124e+40
4.4
25
Bu
171
171
171
172
26
Bg
172
172
172
181
4.817e+39
0.7
5.119e+39
0.7
9.936e+39
1.4
27
Bu
188
189
188
193
28
Ag
193
193
193
194
5.094e+40
7.2
2.499e+39
0.4
5.344e+40
7.6
29
Bg
195
195
195
195
9.999e+39
1.4
1.522e+40
2.2
2.522e+40
3.6
30
Au
201
201
202
201
31
Bu
205
208
205
206
32
Au
208
213
210
208
33
Bg
213
216
213
213
2.729e+39
0.4
3.048e+39
0.4
5.777e+39
0.8
34
Ag
222
222
222
222
9.802e+40
13.9
4.279e+40
6.1
1.408e+41
20.0
35
Ag
240
240
240
240
1.107e+40
1.6
3.350e+39
0.5
1.442e+40
2.0
36
Bg
243
243
243
243
2.129e+40
3.0
2.531e+40
3.6
4.660e+40
6.6
37
Bu
244
244
244
246
38
Au
247
247
247
247
39
Bu
247
250
247
256
40
Au
256
256
257
256
41
Bg
257
257
258
257
3.171e+39
0.4
5.319e+39
0.8
8.490e+39
1.2
42
Ag
258
258
258
258
1.249e+40
1.8
8.831e+38
0.1
1.337e+40
1.9
43
Bg
278
278
278
278
3.915e+38
0.1
4.316e+38
0.1
8.231e+38
0.1
44
Bu
279
279
279
279
45
Ag
279
279
279
279
7.894e+39
1.1
1.121e+39
0.2
9.015e+39
1.3
46
Au
285
285
286
285
47
Bg
294
294
294
294
2.277e+39
0.3
3.833e+39
0.5
6.110e+39
0.9
48
Bu
298
298
298
298
49
Ag
351
351
351
351
6.412e+40
9.1
2.751e+39
0.4
6.687e+40
9.5
50
Au
354
354
354
354
51
Bu
355
355
355
362
52
Bg
362
362
362
365
1.904e+38
0.0
2.918e+38
0.0
4.822e+38
0.1
53
Bu
445
451
445
451
54
Ag
451
451
451
451
6.556e+41
93.0
4.959e+40
7.0
7.052e+41
100.0
55
Bg
451
456
451
456
6.498e+41
92.1
4.915e+40
7.0
6.989e+41
99.1
56
Au
456
467
456
456
57
Bu
500
502
500
500
58
Bg
502
514
502
502
3.515e+39
0.5
4.317e+39
0.6
7.832e+39
1.1
59
Au
514
515
515
514
60
Ag
515
516
515
515
8.417e+39
1.2
5.282e+39
0.7
1.370e+40
1.9
61
Ag
539
539
539
539
2.004e+39
0.3
1.341e+38
0.0
2.138e+39
0.3
62
Au
542
542
543
542
63
Bg
543
543
547
543
3.665e+40
5.2
4.249e+40
6.0
7.914e+40
11.2
64
Bu
549
549
549
549
65
Ag
551
551
551
551
7.878e+39
1.1
1.729e+39
0.2
9.607e+39
1.4
66
Au
554
554
570
554
67
Bu
570
573
573
570
68
Au
573
573
573
573
69
Bg
573
576
576
573
3.411e+37
0.0
5.743e+37
0.0
9.155e+37
0.0
70
Ag
576
578
579
576
1.005e+41
14.3
4.069e+40
5.8
1.412e+41
20.0
71
Bu
579
584
584
584
72
Bg
584
621
593
584
2.651e+38
0.0
3.088e+38
0.0
5.738e+38
0.1
73
Ag
621
622
621
621
7.263e+38
0.1
5.469e+38
0.1
1.273e+39
0.2
74
Au
622
630
631
622
75
Bu
631
631
631
631
76
Bg
631
681
671
631
5.100e+39
0.7
6.224e+39
0.9
1.132e+40
1.6
77
Bu
682
716
682
728
78
Ag
728
728
728
731
6.852e+38
0.1
9.108e+37
0.0
7.763e+38
0.1
79
Au
731
731
735
735
80
Bg
735
735
738
738
2.512e+40
3.6
2.728e+40
3.9
5.240e+40
7.4
81
Bu
738
738
757
789
82
Bg
789
789
789
791
6.875e+38
0.1
9.453e+38
0.1
1.633e+39
0.2
83
Ag
800
800
800
800
2.918e+41
41.4
5.107e+40
7.2
3.428e+41
48.6
84
Au
801
801
801
801
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.