-    Na6O(SO4)2     -    Na6O(SO4)2

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in ICSD database; code 411442 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  225  Fm-3m 
Lattice parameters (Å):  9.6766  9.6766  9.6766 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  225  Fm-3m 
Lattice parameters (Å):  6.6415  6.6415  6.6415 
Angles (°):  60  60  60 

Cell contents: 

Number of atoms:  17 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

S:  0.2500  0.2500  0.2500 
Na:  0.7621  0.7621  0.2379 
O:  0.3407  0.3407  0.9780 
O:  0.0000  1.0000  1.0000 
Na:  0.2379  0.7621  0.7621 
O:  0.9780  0.3407  0.3407 
O:  0.3407  0.3407  0.3407 
Na:  0.2379  0.2379  0.7621 
S:  0.7500  0.7500  0.7500 
O:  0.6593  0.6593  0.6593 
Na:  0.7621  0.2379  0.7621 
O:  0.3407  0.9780  0.3407 
Na:  0.7621  0.2379  0.2379 
O:  0.6593  0.6593  0.0220 
O:  0.6593  0.0220  0.6593 
O:  0.0220  0.6593  0.6593 
Na:  0.2379  0.7621  0.2379 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
57
57
57
57
5
57
57
57
57
6
57
57
57
57
7
143
143
143
143
2.089e+38
0.2
2.694e+38
0.2
4.783e+38
0.4
8
143
143
143
143
2.082e+38
0.2
2.393e+38
0.2
4.474e+38
0.4
9
143
143
143
143
2.087e+38
0.2
3.482e+38
0.3
5.569e+38
0.5
10
146
146
146
146
11
146
146
146
146
12
146
146
146
146
13
192
192
192
192
14
192
192
192
192
15
192
201
201
201
16
211
211
211
211
2.689e+39
2.3
2.017e+39
1.7
4.706e+39
4.0
17
211
211
211
211
2.690e+39
2.3
2.017e+39
1.7
4.707e+39
4.0
18
214
214
214
214
19
214
214
214
214
20
214
214
214
214
21
239
239
239
239
22
239
239
239
239
23
239
239
239
239
24
242
242
242
242
25
242
242
242
242
26
242
247
247
247
27
247
247
247
247
3.330e+37
0.0
4.579e+37
0.0
7.909e+37
0.1
28
247
247
247
247
3.340e+37
0.0
4.592e+37
0.0
7.932e+37
0.1
29
247
279
279
279
3.313e+37
0.0
4.555e+37
0.0
7.868e+37
0.1
30
300
300
300
300
1.932e+40
16.3
1.151e+32
0.0
1.932e+40
16.3
31
371
371
371
371
32
371
371
371
371
33
371
405
405
405
34
448
448
448
448
35
448
448
448
448
36
476
476
476
476
6.091e+39
5.1
4.569e+39
3.9
1.066e+40
9.0
37
476
476
476
476
6.091e+39
5.1
4.569e+39
3.9
1.066e+40
9.0
38
604
604
604
604
39
604
604
604
604
40
604
612
612
612
41
612
612
612
612
5.137e+36
0.0
7.063e+36
0.0
1.220e+37
0.0
42
612
612
612
612
5.179e+36
0.0
8.693e+36
0.0
1.387e+37
0.0
43
612
618
618
618
5.193e+36
0.0
5.556e+36
0.0
1.075e+37
0.0
44
979
979
979
979
45
986
986
986
986
1.183e+41
100.0
4.996e+31
0.0
1.183e+41
100.0
46
1119
1119
1119
1119
5.998e+39
5.1
9.436e+39
8.0
1.543e+40
13.0
47
1119
1119
1119
1119
5.999e+39
5.1
8.137e+39
6.9
1.414e+40
11.9
48
1119
1119
1119
1119
5.998e+39
5.1
7.171e+39
6.1
1.317e+40
11.1
49
1138
1138
1138
1138
50
1138
1138
1138
1138
51
1138
1196
1196
1196
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.