-    BISMUTHINITE     -    Bi2S3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pnma 
Lattice parameters (Å):  5.9633  2.1017  5.8892 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  62  Pnma 
Lattice parameters (Å):  11.0181  3.8455  10.6192 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Bi:  0.5150  0.2500  0.1771 
Bi:  0.6674  0.7500  0.4741 
S:  0.6283  0.7500  0.0523 
S:  0.7179  0.2500  0.3081 
S:  0.4517  0.7500  0.3686 
Bi:  0.9850  0.7500  0.6771 
Bi:  0.8326  0.2500  0.9741 
S:  0.8717  0.2500  0.5523 
S:  0.7821  0.7500  0.8081 
S:  0.0483  0.2500  0.8686 
Bi:  0.4850  0.7500  0.8229 
Bi:  0.3326  0.2500  0.5259 
S:  0.3717  0.2500  0.9477 
S:  0.2821  0.7500  0.6919 
S:  0.5483  0.2500  0.6314 
Bi:  0.0150  0.2500  0.3229 
Bi:  0.1674  0.7500  0.0259 
S:  0.1283  0.7500  0.4477 
S:  0.2179  0.2500  0.1919 
S:  0.9517  0.7500  0.1314 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Au
28
28
28
28
5
B3u
31
32
31
31
6
B2g
32
32
32
32
2.896e+39
0.0
3.982e+39
0.0
6.879e+39
0.0
7
B1g
39
39
39
39
9.832e+40
0.3
1.352e+41
0.4
2.335e+41
0.7
8
B3g
45
45
45
45
1.117e+42
3.2
1.536e+42
4.3
2.653e+42
7.5
9
Ag
45
45
45
45
7.264e+41
2.1
4.421e+41
1.3
1.168e+42
3.3
10
B1u
49
49
49
49
11
Au
52
52
52
52
12
B2u
53
53
55
53
13
B3g
55
55
55
55
4.827e+41
1.4
7.656e+41
2.2
1.248e+42
3.5
14
B1g
55
55
56
55
3.264e+41
0.9
3.468e+41
1.0
6.732e+41
1.9
15
Ag
57
57
57
57
7.655e+42
21.7
1.868e+41
0.5
7.842e+42
22.2
16
B1u
64
64
64
67
17
B3u
72
74
72
72
18
Ag
74
75
74
74
9.601e+41
2.7
4.146e+39
0.0
9.642e+41
2.7
19
B2g
81
81
81
81
5.024e+39
0.0
6.908e+39
0.0
1.193e+40
0.0
20
B3u
90
90
90
90
21
B2g
90
90
90
90
1.619e+41
0.5
2.225e+41
0.6
3.844e+41
1.1
22
B1u
96
96
96
100
23
B2g
102
102
102
102
3.900e+38
0.0
5.363e+38
0.0
9.263e+38
0.0
24
Ag
114
114
114
114
2.028e+42
5.7
2.236e+41
0.6
2.251e+42
6.4
25
B2u
125
125
128
125
26
B1u
128
128
147
147
27
B3u
147
147
147
147
28
Au
147
148
169
169
29
B1g
169
169
185
175
1.911e+42
5.4
2.627e+42
7.4
4.538e+42
12.8
30
B1u
185
185
187
187
31
B2g
187
187
187
187
1.332e+42
3.8
1.832e+42
5.2
3.165e+42
9.0
32
Ag
187
187
190
190
1.978e+42
5.6
8.249e+41
2.3
2.803e+42
7.9
33
B3g
190
190
199
199
1.641e+42
4.6
2.256e+42
6.4
3.896e+42
11.0
34
B3u
199
204
204
204
35
B2g
204
211
211
211
3.775e+41
1.1
5.190e+41
1.5
8.965e+41
2.5
36
B1g
211
211
211
211
3.168e+43
89.7
1.912e+41
0.5
3.187e+43
90.2
37
B1g
211
213
212
213
2.013e+42
5.7
2.761e+42
7.8
4.774e+42
13.5
38
B2u
213
213
213
213
39
Au
213
215
220
219
40
B1g
220
220
222
220
5.958e+41
1.7
8.193e+41
2.3
1.415e+42
4.0
41
Ag
222
222
223
222
1.539e+42
4.4
1.034e+42
2.9
2.573e+42
7.3
42
B3u
223
228
225
223
43
B1u
228
230
228
230
44
B2u
230
233
233
233
45
Au
233
236
236
236
46
B3g
236
237
237
237
1.173e+41
0.3
1.613e+41
0.5
2.787e+41
0.8
47
B1g
237
243
246
238
1.559e+42
4.4
2.144e+42
6.1
3.704e+42
10.5
48
B1u
246
246
247
247
49
B2g
247
247
250
250
1.528e+41
0.4
2.101e+41
0.6
3.630e+41
1.0
50
B2g
250
250
253
253
7.081e+41
2.0
9.737e+41
2.8
1.682e+42
4.8
51
B3u
253
254
254
254
52
Ag
254
257
262
262
3.479e+43
98.5
5.390e+41
1.5
3.533e+43
100.0
53
Ag
262
262
265
262
1.246e+42
3.5
2.769e+41
0.8
1.523e+42
4.3
54
B1u
265
265
268
270
55
B2g
270
270
270
271
1.640e+42
4.6
2.256e+42
6.4
3.896e+42
11.0
56
B3u
281
286
281
281
57
B3u
290
291
290
290
58
Ag
291
294
291
291
6.251e+42
17.7
2.152e+42
6.1
8.403e+42
23.8
59
B2g
297
297
297
297
3.898e+42
11.0
5.360e+42
15.2
9.258e+42
26.2
60
B1u
310
310
310
310
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.