-    CARLFRIESITE     -    CaTe2TeO8

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  15  C2/c 
Lattice parameters (Å):  6.6549  2.9962  5.2886 
Angles (°):  90  115.56  90 

Symmetry (theoretical): 

Space group:  15  C2/c 
Lattice parameters (Å):  6.8947  6.8947  9.8895 
Angles (°):  66.52  113.47  130.55 

Cell contents: 

Number of atoms:  24 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Te:  0.3065  0.8847  0.8555 
Te:  0.0000  0.0000  0.0000 
Ca:  0.4316  0.4316  0.2500 
O:  0.2954  0.1374  0.6596 
O:  0.3268  0.1298  0.1204 
O:  0.1841  0.9757  0.4081 
O:  0.7927  0.4270  0.4115 
Te:  0.8847  0.3065  0.6445 
Te:  0.0000  0.0000  0.5000 
O:  0.1374  0.2954  0.8404 
O:  0.1298  0.3268  0.3796 
O:  0.9757  0.1841  0.0919 
O:  0.4270  0.7927  0.0885 
Te:  0.6935  0.1153  0.1445 
Ca:  0.5684  0.5684  0.7500 
O:  0.7046  0.8626  0.3404 
O:  0.6732  0.8702  0.8796 
O:  0.8159  0.0243  0.5919 
O:  0.2073  0.5730  0.5885 
Te:  0.1153  0.6935  0.3555 
O:  0.8626  0.7046  0.1596 
O:  0.8702  0.6732  0.6204 
O:  0.0243  0.8159  0.9081 
O:  0.5730  0.2073  0.9115 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Au
74
74
76
74
5
Au
91
91
92
91
6
Ag
92
92
96
92
2.062e+40
1.7
8.430e+39
0.7
2.905e+40
2.5
7
Bu
96
97
97
101
8
Bg
108
108
108
108
4.307e+39
0.4
6.899e+39
0.6
1.121e+40
0.9
9
Bu
113
115
113
113
10
Ag
127
127
127
127
3.593e+41
30.4
6.190e+40
5.2
4.212e+41
35.6
11
Au
135
135
141
135
12
Bg
152
152
152
152
3.613e+40
3.1
5.096e+40
4.3
8.709e+40
7.4
13
Bu
159
162
159
173
14
Au
182
182
186
182
15
Bg
186
186
187
186
7.649e+39
0.6
1.230e+40
1.0
1.995e+40
1.7
16
Bu
188
188
188
188
17
Au
189
189
191
189
18
Ag
197
197
197
197
7.299e+40
6.2
1.221e+40
1.0
8.519e+40
7.2
19
Bg
200
200
200
200
3.343e+40
2.8
5.435e+40
4.6
8.778e+40
7.4
20
Bu
203
209
203
209
21
Ag
209
209
209
214
2.855e+41
24.2
2.455e+40
2.1
3.101e+41
26.2
22
Bg
214
214
214
220
4.355e+38
0.0
4.684e+38
0.0
9.039e+38
0.1
23
Ag
220
220
220
225
4.442e+40
3.8
2.389e+40
2.0
6.831e+40
5.8
24
Au
225
225
235
235
25
Bg
235
235
247
239
8.839e+39
0.7
9.654e+39
0.8
1.849e+40
1.6
26
Ag
249
249
249
249
3.487e+40
3.0
1.366e+40
1.2
4.852e+40
4.1
27
Bu
250
253
250
252
28
Au
253
253
259
253
29
Bu
259
261
266
260
30
Bg
266
266
267
266
2.841e+40
2.4
3.125e+40
2.6
5.967e+40
5.0
31
Bg
267
267
274
267
2.768e+40
2.3
4.498e+40
3.8
7.266e+40
6.1
32
Au
277
277
277
277
33
Ag
277
277
280
277
2.118e+41
17.9
3.807e+39
0.3
2.156e+41
18.2
34
Bu
280
287
283
283
35
Bu
297
301
297
301
36
Ag
301
312
301
309
2.707e+41
22.9
6.497e+40
5.5
3.357e+41
28.4
37
Au
312
314
314
312
38
Bg
314
318
317
314
5.002e+40
4.2
6.595e+40
5.6
1.160e+41
9.8
39
Bu
327
343
327
354
40
Au
354
354
364
364
41
Bg
364
364
369
377
2.436e+40
2.1
3.760e+40
3.2
6.195e+40
5.2
42
Bu
383
391
383
390
43
Ag
391
399
391
391
1.443e+40
1.2
1.625e+39
0.1
1.605e+40
1.4
44
Au
399
423
399
399
45
Bu
426
436
426
436
46
Au
436
441
436
436
47
Bu
441
443
441
443
48
Bg
443
445
443
445
2.270e+38
0.0
3.587e+38
0.0
5.858e+38
0.0
49
Ag
445
463
445
465
7.514e+40
6.4
7.701e+39
0.7
8.284e+40
7.0
50
Bg
465
465
465
468
5.011e+37
0.0
8.380e+37
0.0
1.339e+38
0.0
51
Au
468
468
468
476
52
Ag
476
476
476
477
3.935e+40
3.3
1.376e+40
1.2
5.311e+40
4.5
53
Bu
480
485
480
505
54
Au
505
505
509
509
55
Ag
509
509
512
553
5.673e+40
4.8
3.021e+40
2.6
8.693e+40
7.4
56
Bg
556
556
556
556
5.579e+40
4.7
8.236e+40
7.0
1.381e+41
11.7
57
Bg
564
564
564
564
5.176e+40
4.4
6.977e+40
5.9
1.215e+41
10.3
58
Ag
565
565
565
565
1.107e+42
93.7
7.447e+40
6.3
1.182e+42
100.0
59
Au
593
593
593
593
60
Bu
593
601
602
597
61
Bu
602
607
607
607
62
Ag
607
615
613
615
1.453e+40
1.2
8.529e+39
0.7
2.306e+40
2.0
63
Au
615
637
637
628
64
Bg
637
648
658
637
1.899e+40
1.6
2.849e+40
2.4
4.748e+40
4.0
65
Au
659
659
666
659
66
Bu
666
685
678
680
67
Bg
685
687
685
685
1.458e+40
1.2
1.550e+40
1.3
3.008e+40
2.5
68
Ag
687
687
687
687
6.425e+41
54.4
9.382e+39
0.8
6.519e+41
55.2
69
Bu
706
722
706
722
70
Ag
722
722
722
722
4.177e+41
35.3
1.997e+40
1.7
4.377e+41
37.0
71
Bg
722
746
722
741
3.735e+40
3.2
6.152e+40
5.2
9.887e+40
8.4
72
Au
746
749
759
746
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.