-    REALGAR     -    AsS

>Theoretical atomic positions. Lattice paramters fixed as in AMCSD< 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  14  P2_1/n 
Lattice parameters (Å):  9.3270  13.5630  6.5900 
Angles (°):  90.0  106.46  90.0 

Symmetry (theoretical): 

Space group:  14  P2_1/n 
Lattice parameters (Å):  9.3270  13.5630  6.5900 
Angles (°):  90  106.46  90 

Cell contents: 

Number of atoms:  32 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

As:  0.1724  0.9154  0.7913 
As:  0.3989  0.1301  0.8404 
As:  0.3247  0.0951  0.1799 
As:  0.0119  0.0729  0.7246 
S:  0.3795  0.9753  0.7132 
S:  0.2808  0.9318  0.1427 
S:  0.1726  0.1731  0.6267 
S:  0.0735  0.1302  0.0577 
As:  0.3276  0.4154  0.7087 
As:  0.1011  0.6301  0.6596 
As:  0.1753  0.5951  0.3201 
As:  0.4881  0.5729  0.7754 
S:  0.1205  0.4753  0.7868 
S:  0.2192  0.4318  0.3573 
S:  0.3274  0.6731  0.8733 
S:  0.4265  0.6302  0.4423 
As:  0.8276  0.0846  0.2087 
As:  0.6011  0.8699  0.1596 
As:  0.6753  0.9049  0.8201 
As:  0.9881  0.9271  0.2754 
S:  0.6205  0.0247  0.2868 
S:  0.7192  0.0682  0.8573 
S:  0.8274  0.8269  0.3733 
S:  0.9265  0.8698  0.9423 
As:  0.6724  0.5846  0.2913 
As:  0.8989  0.3699  0.3404 
As:  0.8247  0.4049  0.6799 
As:  0.5119  0.4271  0.2246 
S:  0.8795  0.5247  0.2132 
S:  0.7808  0.5682  0.6427 
S:  0.6726  0.3269  0.1267 
S:  0.5735  0.3698  0.5577 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
       

Single Crystal Raman spectra

Single crystal Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

The Raman measurements performed on single crystals employ polarized lasers and allow for the selection of specific elements of the individual Raman tensors of the Raman-active modes.

By convention, in the following we assume a measurement as X(XZ)Z, i.e. incident laser polarized along the X axis, emergent light polarized along the Z axis. If the crystal is aligned with the xyz reference frame, we sample the αxz element. As you rotate the crystal you can sample other entries of the Raman tensor or various linear combineations.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 


Choose the orientation of the crystal with respect to the reference system:

 
Rotation around X axis:
Rotation around Z axis:
Rotation around Y axis: