-    Na2Mg(SO3)2(H2O)2     -    Na2Mg(SO3)2(H2O)2

Theoretical atomic positions and lattice parameters at experimental volum from ICSD database; code 35767 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  7.5240  5.9030  5.1780 
Angles (°):  106.25  109.80  101.49 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  7.5073  5.9062  5.1579 
Angles (°):  106.21  111.17  98.77 

Cell contents: 

Number of atoms:  17 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Mg:  0.5000  0.5000  0.5000 
Na:  0.6676  0.9949  0.3477 
S:  0.2680  0.6272  0.9249 
O:  0.3715  0.7150  0.2663 
O:  0.1522  0.8147  0.8645 
O:  0.4395  0.6964  0.8395 
O:  0.2344  0.2179  0.3186 
H:  0.0980  0.2410  0.2700 
H:  0.2135  0.0701  0.1428 
Na:  0.3324  0.0051  0.6523 
S:  0.7320  0.3728  0.0751 
O:  0.6285  0.2850  0.7337 
O:  0.8478  0.1853  0.1355 
O:  0.5605  0.3036  0.1605 
O:  0.7656  0.7821  0.6814 
H:  0.9020  0.7590  0.7300 
H:  0.7865  0.9299  0.8572 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
0
0
0
0
2
0
0
0
0
3
0
0
0
0
4
115
115
115
115
1.318e+39
0.8
1.072e+38
0.1
1.425e+39
0.9
5
119
119
119
119
1.884e+39
1.2
1.684e+39
1.0
3.567e+39
2.2
6
135
135
135
135
8.203e+38
0.5
8.167e+38
0.5
1.637e+39
1.0
7
142
146
146
143
8
152
153
152
154
9
154
154
154
160
6.055e+39
3.8
8.814e+38
0.5
6.936e+39
4.3
10
164
164
164
164
7.654e+38
0.5
6.953e+38
0.4
1.461e+39
0.9
11
173
173
174
174
12
174
174
174
174
3.223e+39
2.0
8.411e+38
0.5
4.064e+39
2.5
13
182
184
182
182
14
195
195
195
195
7.598e+39
4.7
2.235e+38
0.1
7.821e+39
4.9
15
202
202
203
202
16
223
224
223
224
17
224
226
224
233
7.046e+38
0.4
6.816e+38
0.4
1.386e+39
0.9
18
236
236
236
236
8.824e+38
0.5
7.589e+38
0.5
1.641e+39
1.0
19
239
242
246
240
20
255
259
260
256
21
263
263
263
263
2.137e+38
0.1
2.803e+38
0.2
4.939e+38
0.3
22
269
269
269
269
1.279e+40
8.0
7.263e+39
4.5
2.005e+40
12.5
23
279
287
307
282
24
312
317
325
342
25
344
353
345
353
26
353
374
353
367
1.280e+39
0.8
1.235e+39
0.8
2.515e+39
1.6
27
423
423
428
423
28
481
481
481
481
6.221e+39
3.9
7.559e+39
4.7
1.378e+40
8.6
29
488
488
488
488
30
488
489
488
490
4.837e+39
3.0
7.177e+39
4.5
1.201e+40
7.5
31
501
504
504
501
32
629
629
629
629
1.694e+39
1.1
8.458e+38
0.5
2.539e+39
1.6
33
635
635
648
639
34
766
766
766
766
5.061e+39
3.1
6.150e+39
3.8
1.121e+40
7.0
35
792
792
793
800
36
853
853
853
853
37
853
866
863
853
1.588e+40
9.9
6.954e+39
4.3
2.283e+40
14.2
38
877
877
877
877
2.781e+40
17.3
2.563e+40
15.9
5.345e+40
33.3
39
892
908
892
897
40
909
912
912
912
41
912
941
917
942
1.744e+40
10.9
7.605e+39
4.7
2.505e+40
15.6
42
945
947
947
947
43
947
960
960
954
1.520e+40
9.5
1.093e+40
6.8
2.613e+40
16.3
44
960
969
961
960
5.305e+40
33.0
6.183e+39
3.8
5.924e+40
36.9
45
969
988
1006
986
46
1609
1616
1610
1617
47
1666
1666
1666
1666
4.131e+39
2.6
3.475e+39
2.2
7.606e+39
4.7
48
2874
2874
2874
2874
7.009e+40
43.6
7.986e+40
49.7
1.499e+41
93.3
49
2924
2931
2964
2955
50
3065
3065
3065
3065
1.312e+41
81.6
2.951e+40
18.4
1.607e+41
100.0
51
3072
3147
3076
3077
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.