-    SULFUR     -    S6

 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  148  R-3 
Lattice parameters (Å):  10.8180  10.8180  4.2800 
Angles (°):  90  90  120 

Symmetry (theoretical): 

Space group:  148  R-3 
Lattice parameters (Å):  6.0421  6.0421  6.0421 
Angles (°):  115.20  115.20  115.20 

Cell contents: 

Number of atoms: 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

S:  0.1553  0.2683  0.9113 
S:  0.2683  0.9113  0.1553 
S:  0.9113  0.1553  0.2683 
S:  0.8447  0.7317  0.0887 
S:  0.7317  0.0887  0.8447 
S:  0.0887  0.8447  0.7317 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Au
0
0
0
0
2
Au
0
0
0
0
3
Au
0
0
0
0
4
Eg
117
117
117
117
1.201e+42
2.5
1.695e+42
3.5
2.896e+42
6.0
5
Eg
117
117
117
117
1.201e+42
2.5
1.445e+42
3.0
2.646e+42
5.5
6
Ag
135
135
135
135
1.944e+42
4.0
3.141e+41
0.6
2.258e+42
4.7
7
Eg
186
186
186
186
2.409e+42
5.0
2.178e+42
4.5
4.587e+42
9.5
8
Eg
186
186
186
186
2.409e+42
5.0
3.374e+42
7.0
5.783e+42
11.9
9
Eu
193
193
193
193
10
Eu
193
198
198
193
11
Ag
255
255
255
255
1.316e+43
27.2
1.133e+42
2.3
1.429e+43
29.5
12
Au
295
295
295
296
13
Au
343
343
343
344
14
Eg
414
414
414
414
9.226e+42
19.0
7.580e+42
15.7
1.681e+43
34.7
15
Eg
414
414
414
414
9.226e+42
19.0
1.078e+43
22.3
2.000e+43
41.3
16
Ag
438
438
438
438
4.656e+43
96.1
1.875e+42
3.9
4.843e+43
100.0
17
Eu
440
440
440
440
18
Eu
440
446
446
440
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.