-    LITHIOPHOSPHATE     -    LiPO4

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pmnb 
Lattice parameters (Å):  6.1113  10.4612  4.9208 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  62  Pmnb 
Lattice parameters (Å):  6.0896  10.4602  4.9388 
Angles (°):  90  90  90 

Cell contents: 

Number of atoms:  32 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Li:  0.5022  0.1635  0.3020 
P:  0.7500  0.4258  0.1990 
O:  0.2500  0.4115  0.3055 
0.0433  0.3413  0.2026 
0.2500  0.0499  0.3001 
0.7500  0.0886  0.1183 
Li:  0.4978  0.3365  0.8020 
P:  0.2500  0.0742  0.6990 
O:  0.7500  0.0885  0.8055 
0.9567  0.1587  0.7026 
0.7500  0.4501  0.8001 
0.2500  0.4114  0.6183 
Li:  0.0022  0.8365  0.6980 
P:  0.2500  0.5742  0.8010 
O:  0.7500  0.5885  0.6945 
0.5433  0.6587  0.7974 
0.7500  0.9501  0.6999 
0.2500  0.9114  0.8817 
Li:  0.9978  0.6635  0.1980 
P:  0.7500  0.9258  0.3010 
O:  0.2500  0.9115  0.1945 
0.4567  0.8413  0.2974 
0.2500  0.5499  0.1999 
0.7500  0.5886  0.3817 
P:  0.4978  0.8365  0.6980 
0.9567  0.6587  0.7974 
P:  0.5022  0.6635  0.1980 
0.0433  0.8413  0.2974 
P:  0.9978  0.1635  0.3020 
0.4567  0.3413  0.2026 
P:  0.0022  0.3365  0.8020 
0.5433  0.1587  0.7026 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

  
Nx:  Ny:  Nz:    
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 
Choose the polarization of the lasers.
I ∥ 
I ⊥ 
I Total 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
Ac
0
0
0
0
2
Ac
0
0
0
0
3
Ac
0
0
0
0
4
Au
96
96
96
96
5
B2u
110
110
111
110
6
B2g
140
140
140
140
1.049e+38
0.1
1.442e+38
0.1
2.491e+38
0.2
7
Ag
144
144
144
144
1.191e+38
0.1
8.739e+37
0.1
2.065e+38
0.2
8
B1g
146
146
146
146
1.195e+38
0.1
1.643e+38
0.2
2.838e+38
0.3
9
Ag
158
158
158
158
3.713e+38
0.4
7.277e+37
0.1
4.441e+38
0.4
10
B3g
162
162
162
162
2.248e+37
0.0
3.091e+37
0.0
5.339e+37
0.1
11
B1g
174
174
174
175
12
B2g
175
175
175
175
3.673e+38
0.4
5.051e+38
0.5
8.725e+38
0.8
13
B1u
180
180
180
180
14
B3g
192
192
192
192
1.296e+36
0.0
1.782e+36
0.0
3.077e+36
0.0
15
Au
201
201
201
201
16
B2g
217
217
217
217
9.620e+37
0.1
1.323e+38
0.1
2.285e+38
0.2
17
Ag
218
218
218
218
6.214e+37
0.1
4.148e+37
0.0
1.036e+38
0.1
18
B3u
223
223
223
223
19
B3g
228
228
228
228
20
B1u
241
241
241
242
21
B1g
245
245
245
245
22
B2u
253
253
253
253
23
Au
269
269
269
269
24
B3u
288
288
288
288
25
Ag
304
304
304
304
26
B3g
311
311
311
311
4.268e+38
0.4
2.756e+38
0.3
7.024e+38
0.7
27
B1u
318
318
318
318
1.056e+38
0.1
1.452e+38
0.1
2.509e+38
0.2
28
Au
324
324
324
324
1.139e+38
0.1
1.566e+38
0.2
2.706e+38
0.3
29
Ag
327
327
327
327
4.234e+39
4.1
1.621e+39
1.6
5.855e+39
5.7
30
B2u
328
328
328
328
31
B3g
329
329
329
329
5.399e+38
0.5
7.424e+38
0.7
1.282e+39
1.2
32
B1g
342
342
342
342
33
B3u
345
345
347
345
34
B2g
347
347
350
347
1.551e+39
1.5
2.133e+39
2.1
3.685e+39
3.6
35
B1g
355
355
355
359
36
B1u
359
359
359
368
8.969e+38
0.9
1.233e+39
1.2
2.130e+39
2.1
37
Ag
368
368
368
374
38
B3u
374
374
375
375
39
B1u
375
377
376
377
40
B3g
377
377
377
380
7.742e+36
0.0
1.065e+37
0.0
1.839e+37
0.0
41
B2u
380
380
380
382
1.417e+39
1.4
1.052e+39
1.0
2.469e+39
2.4
42
B2g
382
382
382
382
4.992e+38
0.5
6.864e+38
0.7
1.186e+39
1.1
43
Au
382
382
382
391
44
B1g
391
395
391
395
45
B2u
395
404
395
402
46
B2g
404
405
404
404
1.111e+39
1.1
1.528e+39
1.5
2.639e+39
2.6
47
B3u
405
413
405
413
48
Au
413
421
428
428
49
B1u
428
429
429
429
50
B3u
429
436
432
433
51
B2u
436
437
436
436
3.125e+38
0.3
4.297e+38
0.4
7.422e+38
0.7
52
B3g
437
438
437
437
1.098e+38
0.1
1.510e+38
0.1
2.607e+38
0.3
53
Au
438
441
438
441
54
B2g
441
442
441
442
4.925e+38
0.5
6.772e+38
0.7
1.170e+39
1.1
55
Au
442
448
448
448
56
Ag
448
459
451
459
2.148e+39
2.1
1.042e+38
0.1
2.253e+39
2.2
57
B1g
459
460
459
460
58
B1u
460
464
460
464
3.731e+38
0.4
4.339e+37
0.0
4.164e+38
0.4
59
Ag
466
466
466
466
8.243e+38
0.8
1.133e+39
1.1
1.958e+39
1.9
60
B3g
469
469
470
469
61
Ag
470
470
475
475
62
B2u
475
477
477
477
63
B1g
477
482
482
482
5.449e+38
0.5
3.318e+38
0.3
8.767e+38
0.8
64
B3u
482
489
489
489
1.709e+36
0.0
2.351e+36
0.0
4.060e+36
0.0
65
B1u
489
499
499
492
6.014e+38
0.6
8.269e+38
0.8
1.428e+39
1.4
66
B2g
499
508
516
516
67
B2u
516
516
536
519
68
B3g
536
536
536
536
1.042e+38
0.1
1.433e+38
0.1
2.474e+38
0.2
69
B2u
565
565
565
565
70
B1u
565
565
566
569
71
B3u
569
573
569
573
72
B2u
573
581
573
581
73
Ag
581
584
584
584
74
Au
584
590
590
588
2.292e+39
2.2
1.695e+39
1.6
3.987e+39
3.9
75
B3g
590
600
600
590
1.377e+38
0.1
1.894e+38
0.2
3.271e+38
0.3
76
Ag
600
602
602
600
1.770e+39
1.7
9.104e+38
0.9
2.680e+39
2.6
77
B1g
602
603
603
602
78
B2g
603
611
611
603
1.968e+39
1.9
2.705e+39
2.6
4.673e+39
4.5
79
B1u
611
611
623
611
1.867e+38
0.2
2.568e+38
0.2
4.435e+38
0.4
80
B3g
644
644
644
644
3.568e+37
0.0
4.906e+37
0.0
8.475e+37
0.1
81
Ag
910
910
910
910
82
B1u
911
911
911
911
1.028e+41
99.6
3.834e+38
0.4
1.032e+41
100.0
83
B2u
913
913
913
913
84
B3g
918
918
918
918
1.039e+37
0.0
1.428e+37
0.0
2.466e+37
0.0
85
B3u
986
991
986
986
86
Ag
991
991
991
991
6.511e+39
6.3
3.572e+39
3.5
1.008e+40
9.8
87
B1u
991
992
991
992
88
B2g
992
1001
992
1001
1.042e+39
1.0
1.432e+39
1.4
2.474e+39
2.4
89
Ag
1001
1005
1001
1005
2.842e+39
2.8
1.982e+39
1.9
4.824e+39
4.7
90
B3g
1005
1006
1005
1006
2.026e+37
0.0
2.786e+37
0.0
4.812e+37
0.0
91
B2u
1006
1015
1007
1015
92
B3g
1015
1022
1015
1022
9.169e+38
0.9
1.261e+39
1.2
2.178e+39
2.1
93
Au
1022
1031
1022
1031
94
B1g
1031
1032
1031
1032
3.462e+39
3.4
4.760e+39
4.6
8.222e+39
8.0
95
B2u
1032
1093
1119
1092
96
B1u
1119
1119
1123
1122
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 
You can define the size of the supercell for the visualization of the vibration.
Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.