-    ZIRCON     -    ZrSiO4

 

 

Parameters of the Calculation 


All the calculations have been done using the ABINIT software. This is a list of the most representative parameteres used during the Raman calculation.


Number of electronic bands: 26
k-points  
   grid: 4 4 4 
   number of shifts: 
   shifts: 0 0 0 
Kinetic energy cut-off: 40 Ha  [=1088.464 eV ]
eXchange-Correlation functional: LDA pw90 

Pseudopotentials: 
Zr:  Tetter norm-conserving pseudopotential  
Si:  silicon, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
O:  oxygen, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local  
 

Dielectric Properties 


We define:

  • The Born effective charges, also called dynamical charges, are tensors that correspond to the energy derivative with respect to atomic displacements and electric fields or, equivalently, to the change in atomic force due to an electric field: The sum of the Born effective charges of all nuclei in one cell must vanish, element by element, along each of the three directions of the space.
  • The dielectric tensors are the energy derivative with respect to two electric fields. They also relate the induced polarization to the external electric field.

Born effective charges (Z): 

Zr: 5.3912 0.0000 0.0000 
-0.0000 5.3912 -0.0000 
-0.0000 0.0000 4.6004 
Eig. Value: 5.3912 5.3912 4.6004 
Si: 3.2455 -0.0000 -0.0000 
-0.0000 3.2455 0.0000 
-0.0000 0.0000 4.4359 
Eig. Value: 3.2455 3.2455 4.4359 
O: -1.1493 0.0000 -0.0000 
-0.0000 -3.1690 0.3392 
0.0000 0.1625 -2.2591 
Eig. Value: -1.1493 -3.2336 -2.1945 
O: -1.1493 0.0000 -0.0000 
-0.0000 -3.1690 -0.3392 
0.0000 -0.1625 -2.2591 
Eig. Value: -1.1493 -3.2336 -2.1945 
Zr: 5.3912 -0.0000 -0.0000 
0.0000 5.3912 0.0000 
0.0000 -0.0000 4.6004 
Eig. Value: 5.3912 5.3912 4.6004 
Si: 3.2455 -0.0000 0.0000 
0.0000 3.2455 -0.0000 
0.0000 0.0000 4.4359 
Eig. Value: 3.2455 3.2455 4.4359 
O: -3.1690 -0.0000 -0.3392 
0.0000 -1.1493 -0.0000 
-0.1625 0.0000 -2.2591 
Eig. Value: -3.2336 -1.1493 -2.1945 
O: -3.1690 -0.0000 0.3392 
0.0000 -1.1493 -0.0000 
0.1625 0.0000 -2.2591 
Eig. Value: -3.2336 -1.1493 -2.1945 
O: -1.1493 0.0000 -0.0000 
-0.0000 -3.1690 -0.3392 
0.0000 -0.1625 -2.2591 
Eig. Value: -1.1493 -3.2336 -2.1945 
O: -1.1493 0.0000 0.0000 
-0.0000 -3.1690 0.3392 
0.0000 0.1625 -2.2591 
Eig. Value: -1.1493 -3.2336 -2.1945 
O: -3.1690 -0.0000 0.3392 
0.0000 -1.1493 0.0000 
0.1625 0.0000 -2.2591 
Eig. Value: -3.2336 -1.1493 -2.1945 
O: -3.1690 -0.0000 -0.3392 
0.0000 -1.1493 -0.0000 
-0.1625 0.0000 -2.2591 
Eig. Value: -3.2336 -1.1493 -2.1945 
Atom type 

Dielectric tensors: 

 
Ɛ4.0582 0.0000 0.0000 
0.0000 4.0582 0.0000 
0.0000 0.0000 4.2612 
Eig. Value: 4.0582 4.0582 4.2612 
Refractive index (N): 2.0145 0.0000 0.0000 
0.0000 2.0145 0.0000 
0.0000 0.0000 2.0643 
Eig. Value: 2.0145 2.0145 2.0643 
Ɛ00.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
Eig. Value: 0.0000 0.0000 0.0000 
 

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B1u
127
127
127
127
5
Eg
194
194
194
194
4.241e+39
1.9
5.896e+39
2.7
1.014e+40
4.6
6
Eg
194
194
194
194
4.241e+39
1.9
5.766e+39
2.6
1.001e+40
4.6
7
B1g
223
223
223
223
8.259e+39
3.8
6.194e+39
2.8
1.445e+40
6.6
8
Eg
225
225
225
225
8.033e+39
3.7
1.339e+40
6.1
2.142e+40
9.8
9
Eg
225
225
225
225
8.033e+39
3.7
8.704e+39
4.0
1.674e+40
7.6
10
A2g
242
242
242
242
11
B2g
257
257
257
257
9.746e+38
0.4
1.340e+39
0.6
2.315e+39
1.1
12
Eu
281
281
281
281
13
Eu
281
339
339
281
14
A2u
343
343
343
364
15
Eg
364
364
364
364
3.797e+40
17.3
5.378e+40
24.5
9.175e+40
41.8
16
Eg
364
364
364
376
3.797e+40
17.3
5.064e+40
23.1
8.861e+40
40.4
17
Eu
376
376
376
376
18
Eu
376
390
390
390
19
B1g
390
392
392
392
3.257e+39
1.5
2.442e+39
1.1
5.699e+39
2.6
20
A1u
392
417
417
423
21
Eu
423
423
423
423
22
Eu
423
438
438
438
23
A1g
438
465
465
473
8.276e+40
37.7
3.679e+40
16.8
1.196e+41
54.5
24
Eg
536
536
536
536
1.434e+37
0.0
2.296e+37
0.0
3.730e+37
0.0
25
Eg
536
536
536
536
1.434e+37
0.0
1.647e+37
0.0
3.081e+37
0.0
26
B2u
562
562
562
562
27
A2u
597
597
597
627
28
B1g
627
627
627
640
8.416e+38
0.4
6.312e+38
0.3
1.473e+39
0.7
29
Eu
866
866
866
866
30
Eu
866
920
920
866
31
Eg
920
920
920
920
2.402e+37
0.0
2.563e+37
0.0
4.965e+37
0.0
32
Eg
920
937
937
920
2.402e+37
0.0
4.042e+37
0.0
6.444e+37
0.0
33
B2u
937
966
966
937
34
A1g
966
976
976
966
2.585e+40
11.8
2.348e+39
1.1
2.820e+40
12.9
35
A2u
976
1012
1012
1012
36
B1g
1012
1026
1026
1094
1.253e+41
57.1
9.400e+40
42.9
2.193e+41
100.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.
 

Single Crystal Raman spectra

Single crystal Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

The Raman measurements performed on single crystals employ polarized lasers and allow for the selection of specific elements of the individual Raman tensors of the Raman-active modes.

By convention, in the following we assume a measurement as X(XZ)Z, i.e. incident laser polarized along the X axis, emergent light polarized along the Z axis. If the crystal is aligned with the xyz reference frame, we sample the αxz element. As you rotate the crystal you can sample other entries of the Raman tensor or various linear combineations.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 


Choose the orientation of the crystal with respect to the reference system:

 
Rotation around X axis:
Rotation around Z axis:
Rotation around Y axis: