-    PARATELLURITE     -    TeO2

Theoretical atomic positions. Lattice parameters fixed as in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  92  P4_12_12 
Lattice parameters (Å):  4.8050  4.8050  7.6090 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  92  P4_12_12 
Lattice parameters (Å):  4.8050  4.8050  7.6090 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  12 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Te:  0.0349  0.0349  0.0000 
O:  0.1440  0.2620  0.1824 
Te:  0.4651  0.5349  0.2500 
O:  0.2380  0.6440  0.4324 
O:  0.3560  0.7620  0.0676 
Te:  0.9651  0.9651  0.5000 
O:  0.8560  0.7380  0.6824 
O:  0.7380  0.8560  0.3176 
O:  0.2620  0.1440  0.8176 
Te:  0.5349  0.4651  0.7500 
O:  0.7620  0.3560  0.9324 
O:  0.6440  0.2380  0.5676 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B1
54
54
54
54
6.200e+40
2.4
4.650e+40
1.8
1.085e+41
4.2
5
A2
82
82
82
108
6
E1
112
112
112
112
2.482e+41
9.7
3.413e+41
13.3
5.896e+41
22.9
7
E1
112
113
113
112
2.482e+41
9.7
3.413e+41
13.3
5.895e+41
22.9
8
B1
138
138
138
138
2.597e+40
1.0
1.948e+40
0.8
4.545e+40
1.8
9
A1
144
144
144
144
1.010e+42
39.3
6.229e+39
0.2
1.016e+42
39.5
10
B2
155
155
155
155
1.327e+41
5.2
1.824e+41
7.1
3.150e+41
12.3
11
E1
175
175
175
175
2.683e+40
1.0
3.689e+40
1.4
6.372e+40
2.5
12
E1
175
179
179
175
2.685e+40
1.0
3.693e+40
1.4
6.378e+40
2.5
13
B1
179
193
193
179
1.364e+40
0.5
1.023e+40
0.4
2.386e+40
0.9
14
B1
198
198
198
198
3.379e+40
1.3
2.534e+40
1.0
5.913e+40
2.3
15
E1
206
206
206
206
1.037e+39
0.0
1.426e+39
0.1
2.463e+39
0.1
16
E1
206
231
231
206
1.037e+39
0.0
1.426e+39
0.1
2.463e+39
0.1
17
A1
231
236
236
231
2.898e+40
1.1
2.904e+39
0.1
3.189e+40
1.2
18
A2
251
251
251
258
19
B2
285
285
285
285
2.051e+40
0.8
2.820e+40
1.1
4.872e+40
1.9
20
E1
291
291
291
291
4.590e+39
0.2
6.311e+39
0.2
1.090e+40
0.4
21
E1
291
311
311
291
4.592e+39
0.2
6.314e+39
0.2
1.091e+40
0.4
22
E1
318
318
318
318
1.928e+40
0.8
2.651e+40
1.0
4.580e+40
1.8
23
E1
318
320
320
318
1.929e+40
0.8
2.652e+40
1.0
4.580e+40
1.8
24
A2
320
335
335
336
25
E1
336
336
336
336
4.743e+39
0.2
6.521e+39
0.3
1.126e+40
0.4
26
E1
336
365
365
365
4.741e+39
0.2
6.518e+39
0.3
1.126e+40
0.4
27
A1
365
395
395
373
2.555e+41
9.9
1.446e+40
0.6
2.700e+41
10.5
28
B2
395
400
400
395
29
B1
579
579
579
579
8.536e+40
3.3
6.402e+40
2.5
1.494e+41
5.8
30
A2
584
584
584
628
31
E1
628
628
628
628
1.472e+40
0.6
2.024e+40
0.8
3.495e+40
1.4
32
E1
628
637
637
637
1.472e+40
0.6
2.024e+40
0.8
3.497e+40
1.4
33
A1
637
703
703
755
2.570e+42
100.0
7.568e+38
0.0
2.571e+42
100.0
34
E1
755
755
755
755
4.243e+40
1.7
5.835e+40
2.3
1.008e+41
3.9
35
E1
755
771
771
758
4.243e+40
1.7
5.834e+40
2.3
1.008e+41
3.9
36
B2
771
794
794
771
5.984e+40
2.3
8.228e+40
3.2
1.421e+41
5.5
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.