-    ROMARKITE     -    SnO

 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  129  P4/nmm 
Lattice parameters (Å):  3.7986  3.7986  4.8408 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  129  P4/nmm 
Lattice parameters (Å):  3.7986  3.7986  4.8408 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms: 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sn:  0.0000  0.0000  0.2369 
Sn:  0.0000  0.0000  0.7631 
O:  0.0000  0.0000  0.0000 
O:  0.0000  0.0000  0.0000 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
E1g
122
122
122
122
4.652e+41
14.9
6.396e+41
20.5
1.105e+42
35.4
5
E1g
122
122
122
122
4.652e+41
14.9
6.396e+41
20.5
1.105e+42
35.4
6
A1g
214
214
214
214
3.067e+42
98.3
5.433e+40
1.7
3.121e+42
100.0
7
E1u
307
307
307
307
8
E1u
307
374
374
307
9
B1g
374
402
402
374
9.436e+40
3.0
7.077e+40
2.3
1.651e+41
5.3
10
A2u
402
467
467
479
11
E1g
479
479
479
479
1.296e+40
0.4
1.782e+40
0.6
3.078e+40
1.0
12
E1g
479
479
479
526
1.296e+40
0.4
1.782e+40
0.6
3.078e+40
1.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.