-    HAFNIUM DIOXIDE     -    HfO2

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints), starting from a rutile-type structure. 

 

Parameters of the Calculation 


All the calculations have been done using the ABINIT software. This is a list of the most representative parameteres used during the Raman calculation.


Number of electronic bands: 26
k-points  
   grid: 4 4 8 
   number of shifts: 
   shifts: 0.5 0.5 0.5 
Kinetic energy cut-off: 38 Ha  [=1034.0408 eV ]
eXchange-Correlation functional: LDA pw90 

Pseudopotentials: 
Hf:  hafnium, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 1 local 
O:  oxygen, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
 

Dielectric Properties 


We define:

  • The Born effective charges, also called dynamical charges, are tensors that correspond to the energy derivative with respect to atomic displacements and electric fields or, equivalently, to the change in atomic force due to an electric field: The sum of the Born effective charges of all nuclei in one cell must vanish, element by element, along each of the three directions of the space.
  • The dielectric tensors are the energy derivative with respect to two electric fields. They also relate the induced polarization to the external electric field.

Born effective charges (Z): 

Hf: 5.1006 0.5450 0.0000 
0.5450 5.1006 -0.0000 
0.0000 0.0000 5.8399 
Eig. Value: 5.6455 4.5556 5.8399 
O: -2.5503 -1.1488 0.0000 
-1.1488 -2.5503 0.0000 
0.0000 0.0000 -2.9199 
Eig. Value: -1.4015 -3.6991 -2.9199 
Hf: 5.1006 -0.5450 -0.0000 
-0.5450 5.1006 -0.0000 
-0.0000 -0.0000 5.8399 
Eig. Value: 5.6455 4.5556 5.8399 
O: -2.5503 1.1488 -0.0000 
1.1488 -2.5503 0.0000 
-0.0000 0.0000 -2.9199 
Eig. Value: -1.4015 -3.6991 -2.9199 
O: -2.5503 -1.1488 -0.0000 
-1.1488 -2.5503 -0.0000 
-0.0000 -0.0000 -2.9199 
Eig. Value: -1.4015 -3.6991 -2.9199 
O: -2.5503 1.1488 0.0000 
1.1488 -2.5503 -0.0000 
0.0000 -0.0000 -2.9199 
Eig. Value: -1.4015 -3.6991 -2.9199 
Atom type 

Dielectric tensors: 

 
Ɛ4.1434 0.0000 0.0000 
0.0000 4.1434 0.0000 
0.0000 0.0000 4.5656 
Eig. Value: 4.1434 4.1434 4.5656 
Refractive index (N): 2.0355 0.0000 0.0000 
0.0000 2.0355 0.0000 
0.0000 0.0000 2.1367 
Eig. Value: 2.0355 2.0355 2.1367 
Ɛ00.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
Eig. Value: 0.0000 0.0000 0.0000 
 

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B1u
111
111
111
111
5
B1g
114
114
114
114
2.096e+37
0.0
1.572e+37
0.0
3.668e+37
0.0
6
Eu
234
234
234
234
7
Eu
234
241
241
234
8
Eu
252
252
252
252
9
Eu
252
347
347
252
10
A2g
386
386
386
386
11
A2u
415
415
415
531
12
B1u
531
531
531
551
13
Eg
551
551
551
551
4.961e+40
26.8
5.271e+40
28.5
1.023e+41
55.3
14
Eg
551
551
551
593
4.961e+40
26.8
8.372e+40
45.2
1.333e+41
72.0
15
Eu
593
593
593
593
16
Eu
593
717
717
717
17
A1g
717
814
814
741
1.307e+41
70.6
5.434e+40
29.4
1.851e+41
100.0
18
B2g
872
872
872
872
1.625e+39
0.9
2.235e+39
1.2
3.860e+39
2.1
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.
 

Single Crystal Raman spectra

Single crystal Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

The Raman measurements performed on single crystals employ polarized lasers and allow for the selection of specific elements of the individual Raman tensors of the Raman-active modes.

By convention, in the following we assume a measurement as X(XZ)Z, i.e. incident laser polarized along the X axis, emergent light polarized along the Z axis. If the crystal is aligned with the xyz reference frame, we sample the αxz element. As you rotate the crystal you can sample other entries of the Raman tensor or various linear combineations.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 


Choose the orientation of the crystal with respect to the reference system:

 
Rotation around X axis:
Rotation around Z axis:
Rotation around Y axis: