-    LAURIONITE     -    PbClOH

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pcmn 
Lattice parameters (Å):  9.6987  4.0203  7.1110 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  62  Pcmn 
Lattice parameters (Å):  9.5257  3.9340  6.9218 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  16 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Pb:  0.0902  0.2500  0.7939 
O:  0.0411  0.2500  0.1300 
H:  0.1174  0.2500  0.2243 
Cl:  0.8244  0.2500  0.5599 
Pb:  0.5902  0.7500  0.7061 
O:  0.5411  0.7500  0.3700 
H:  0.6174  0.7500  0.2757 
Cl:  0.3244  0.7500  0.9401 
Pb:  0.9098  0.7500  0.2061 
O:  0.9589  0.7500  0.8700 
H:  0.8826  0.7500  0.7757 
Cl:  0.1756  0.7500  0.4401 
Pb:  0.4098  0.2500  0.2939 
O:  0.4589  0.2500  0.6300 
H:  0.3826  0.2500  0.7243 
Cl:  0.6756  0.2500  0.0599 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Au
11
11
11
11
5
A1g
32
32
32
32
3.465e+40
6.4
2.459e+40
4.5
5.924e+40
11.0
6
B3u
34
34
34
34
7
B3g
53
53
53
53
6.644e+39
1.2
9.136e+39
1.7
1.578e+40
2.9
8
B1g
57
57
57
57
8.048e+40
14.9
1.107e+41
20.5
1.911e+41
35.3
9
B2g
66
66
66
66
3.644e+37
0.0
5.010e+37
0.0
8.654e+37
0.0
10
B1u
67
67
67
67
11
B2u
76
76
89
76
12
B3g
89
89
89
89
8.203e+38
0.2
1.128e+39
0.2
1.948e+39
0.4
13
B3u
89
91
91
89
14
A1g
91
99
99
91
5.371e+40
9.9
4.019e+40
7.4
9.390e+40
17.4
15
Au
99
104
104
99
16
B1g
104
109
109
104
8.376e+40
15.5
1.152e+41
21.3
1.989e+41
36.8
17
B1u
109
109
109
109
18
A1g
109
112
112
112
8.513e+40
15.7
5.849e+40
10.8
1.436e+41
26.6
19
B2g
112
120
120
120
9.750e+39
1.8
1.341e+40
2.5
2.316e+40
4.3
20
A1g
120
123
124
123
4.540e+41
83.9
8.569e+40
15.8
5.396e+41
99.8
21
B3u
124
124
124
124
22
B1u
124
127
127
127
23
B2g
127
165
157
165
1.228e+41
22.7
1.689e+41
31.2
2.917e+41
53.9
24
B2g
165
169
165
174
1.657e+40
3.1
2.278e+40
4.2
3.935e+40
7.3
25
B2u
249
249
251
249
26
Au
251
251
284
251
27
B1u
284
284
287
294
28
B3u
294
296
294
295
29
B2g
297
297
297
297
3.210e+39
0.6
4.414e+39
0.8
7.625e+39
1.4
30
B3g
298
298
298
298
1.746e+40
3.2
2.400e+40
4.4
4.146e+40
7.7
31
A1g
299
299
299
299
1.158e+41
21.4
2.580e+40
4.8
1.416e+41
26.2
32
B1g
300
300
300
300
5.004e+38
0.1
6.881e+38
0.1
1.189e+39
0.2
33
B3u
335
335
335
335
34
Ag
335
342
335
335
7.208e+40
13.3
2.571e+40
4.8
9.779e+40
18.1
35
B2g
342
345
342
342
8.072e+37
0.0
1.110e+38
0.0
1.917e+38
0.0
36
B1u
345
357
345
370
37
B2u
507
507
513
507
38
Au
513
513
521
513
39
B3g
521
521
526
521
6.465e+40
12.0
8.890e+40
16.4
1.536e+41
28.4
40
B1g
526
526
588
526
1.473e+40
2.7
2.026e+40
3.7
3.499e+40
6.5
41
B1u
679
679
679
681
42
A1g
681
681
681
690
1.645e+41
30.4
5.130e+40
9.5
2.158e+41
39.9
43
B3u
702
711
702
702
44
B2g
714
714
714
714
1.143e+40
2.1
1.572e+40
2.9
2.715e+40
5.0
45
A1g
3511
3511
3511
3511
5.396e+41
99.8
1.126e+39
0.2
5.407e+41
100.0
46
B3u
3515
3518
3515
3515
47
B1u
3518
3518
3518
3518
48
B2g
3518
3520
3518
3523
2.608e+39
0.5
3.586e+39
0.7
6.194e+39
1.1
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.