-    SPHALERITE     -    ZnS

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  216  F-43m 
Lattice parameters (Å):  5.4093  5.4093  5.4093 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  216  F-43m 
Lattice parameters (Å):  3.7685  3.7685  3.7685 
Angles (°):  60.0  60.0  60.0 

Cell contents: 

Number of atoms: 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Zn:  0.0000  0.0000  0.0000 
S:  0.2500  0.2500  0.2500 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
 

Parameters of the Calculation 


All the calculations have been done using the ABINIT software. This is a list of the most representative parameteres used during the Raman calculation.


Number of electronic bands: 26
k-points  
   grid: 6 6 6 
   number of shifts: 
   shifts: 0 0 0 
Kinetic energy cut-off: 40 Ha  [=1088.464 eV ]
eXchange-Correlation functional: LDA pw90 

Pseudopotentials: 
Zn:  zinc, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 0 local 
S:  sulphur, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
 

Dielectric Properties 


We define:

  • The Born effective charges, also called dynamical charges, are tensors that correspond to the energy derivative with respect to atomic displacements and electric fields or, equivalently, to the change in atomic force due to an electric field: The sum of the Born effective charges of all nuclei in one cell must vanish, element by element, along each of the three directions of the space.
  • The dielectric tensors are the energy derivative with respect to two electric fields. They also relate the induced polarization to the external electric field.

Born effective charges (Z): 

Zn: 2.0363 0.0000 -0.0000 
-0.0000 2.0363 -0.0000 
-0.0000 0.0000 2.0363 
Eig. Value: 2.0363 2.0363 2.0363 
S: -2.0363 -0.0000 0.0000 
0.0000 -2.0363 0.0000 
0.0000 -0.0000 -2.0363 
Eig. Value: -2.0363 -2.0363 -2.0363 
Atom type 

Dielectric tensors: 

 
Ɛ7.0378 0.0000 0.0000 
0.0000 7.0378 0.0000 
0.0000 0.0000 7.0378 
Eig. Value: 7.0378 7.0378 7.0378 
Refractive index (N): 2.6529 -0.0000 -0.0000 
-0.0000 2.6529 -0.0000 
-0.0000 -0.0000 2.6529 
Eig. Value: 2.6529 2.6529 2.6529 
Ɛ00.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
Eig. Value: 0.0000 0.0000 0.0000 
 

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
T1
0
0
0
0
2
T1
0
0
0
0
3
T1
0
0
0
0
4
T1
288
288
288
288
2.235e+38
42.1
3.073e+38
57.9
5.308e+38
100.0
5
T1
288
288
288
288
2.235e+38
42.1
3.073e+38
57.9
5.308e+38
100.0
6
T1
288
345
345
345
2.235e+38
42.1
3.073e+38
57.9
5.308e+38
100.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.