-    ADAMITE     -    Zn2AsO4OH

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  58  Pnnm 
Lattice parameters (Å):  8.3060  8.5240  6.0430 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  58  Pnnm 
Lattice parameters (Å):  8.2225  8.4359  6.0369 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  36 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

As:  0.2495  0.2468  0.5000 
Zn:  0.0000  0.0000  0.2477 
Zn:  0.1369  0.3645  0.0000 
O:  0.0690  0.1481  0.5000 
O:  0.1090  0.1285  0.0000 
O:  0.3956  0.1055  0.5000 
O:  0.2709  0.3683  0.2765 
H:  0.2164  0.0791  0.0000 
As:  0.7505  0.7532  0.5000 
Zn:  0.8631  0.6355  0.0000 
O:  0.9310  0.8519  0.5000 
O:  0.8910  0.8715  0.0000 
O:  0.6044  0.8945  0.5000 
O:  0.7291  0.6317  0.2765 
H:  0.7836  0.9209  0.0000 
As:  0.2505  0.7468  0.0000 
Zn:  0.5000  0.5000  0.2523 
Zn:  0.3631  0.8645  0.5000 
O:  0.4310  0.6481  0.0000 
O:  0.3910  0.6285  0.5000 
O:  0.1044  0.6055  0.0000 
O:  0.2291  0.8683  0.2235 
H:  0.2836  0.5791  0.5000 
As:  0.7495  0.2532  0.0000 
Zn:  0.6369  0.1355  0.5000 
O:  0.5690  0.3519  0.0000 
O:  0.6090  0.3715  0.5000 
O:  0.8956  0.3945  0.0000 
O:  0.7709  0.1317  0.2235 
H:  0.7164  0.4209  0.5000 
Zn:  0.0000  0.0000  0.7523 
O:  0.7291  0.6317  0.7235 
O:  0.2709  0.3683  0.7235 
Zn:  0.5000  0.5000  0.7477 
O:  0.7709  0.1317  0.7765 
O:  0.2291  0.8683  0.7765 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B3g
3
3
3
3
5
B2g
51
51
51
51
2.962e+39
0.8
4.072e+39
1.1
7.034e+39
1.8
6
B1u
53
53
53
53
7
B3g
63
63
63
63
4.977e+38
0.1
6.843e+38
0.2
1.182e+39
0.3
8
B2u
81
81
81
81
9
B3g
85
85
85
85
1.905e+37
0.0
2.620e+37
0.0
4.525e+37
0.0
10
Au
85
85
85
85
4.096e+37
0.0
5.631e+37
0.0
9.727e+37
0.0
11
B3g
93
93
93
93
5.895e+36
0.0
8.105e+36
0.0
1.400e+37
0.0
12
Au
105
105
105
105
13
B3u
106
107
106
106
14
B3u
111
114
111
111
15
A1g
117
117
117
117
2.323e+39
0.6
1.404e+38
0.0
2.464e+39
0.6
16
B2g
120
120
120
120
7.399e+38
0.2
1.017e+39
0.3
1.757e+39
0.5
17
B3g
123
123
123
123
1.872e+39
0.5
2.574e+39
0.7
4.446e+39
1.2
18
B1u
125
125
125
126
19
B2g
127
127
127
127
8.759e+36
0.0
1.204e+37
0.0
2.080e+37
0.0
20
A1g
138
138
138
138
1.217e+40
3.2
9.477e+38
0.2
1.311e+40
3.4
21
B2u
139
139
140
139
22
B3u
140
140
140
140
23
B1g
140
145
142
140
2.758e+38
0.1
3.792e+38
0.1
6.550e+38
0.2
24
B2u
147
147
152
147
25
B1g
154
154
154
154
2.430e+37
0.0
3.341e+37
0.0
5.772e+37
0.0
26
Au
156
156
156
156
27
A1g
167
167
167
167
4.916e+39
1.3
1.912e+38
0.0
5.107e+39
1.3
28
B3u
192
192
192
192
29
B3g
192
197
192
192
8.799e+38
0.2
1.210e+39
0.3
2.090e+39
0.5
30
B2u
197
201
200
197
31
Au
201
201
201
201
32
B3g
201
204
201
201
4.255e+38
0.1
5.851e+38
0.2
1.011e+39
0.3
33
B1g
204
206
204
204
2.108e+39
0.5
2.899e+39
0.8
5.007e+39
1.3
34
B1u
206
209
206
211
35
B1g
211
211
211
211
4.102e+38
0.1
5.640e+38
0.1
9.742e+38
0.3
36
A1g
211
211
211
216
7.185e+39
1.9
4.389e+37
0.0
7.229e+39
1.9
37
B2u
216
216
221
223
38
B1g
223
223
223
223
4.482e+38
0.1
6.163e+38
0.2
1.064e+39
0.3
39
B2u
229
229
229
229
4.828e+38
0.1
3.122e+37
0.0
5.140e+38
0.1
40
Ag
229
229
232
229
1.119e+40
2.9
7.233e+38
0.2
1.191e+40
3.1
41
B3u
232
232
253
232
42
A1g
254
254
254
254
3.879e+40
10.1
2.143e+39
0.6
4.093e+40
10.7
43
B2g
263
263
263
263
4.429e+39
1.2
6.090e+39
1.6
1.052e+40
2.7
44
B3u
268
268
268
268
45
B1g
275
275
275
275
5.142e+38
0.1
7.070e+38
0.2
1.221e+39
0.3
46
B3g
278
278
278
278
2.349e+39
0.6
3.229e+39
0.8
5.578e+39
1.5
47
B1u
293
293
293
294
48
Au
294
294
294
298
49
B3g
298
298
298
305
7.546e+39
2.0
1.038e+40
2.7
1.792e+40
4.7
50
B1g
309
309
309
309
1.209e+39
0.3
1.663e+39
0.4
2.872e+39
0.7
51
B3u
311
319
311
311
52
B2g
319
326
319
319
3.152e+37
0.0
4.334e+37
0.0
7.486e+37
0.0
53
A1g
326
328
326
326
6.391e+39
1.7
4.792e+39
1.2
1.118e+40
2.9
54
B1u
328
338
328
345
55
Au
345
345
345
347
56
B2u
347
347
357
347
57
B3u
358
362
358
358
58
A1g
362
366
362
362
9.655e+39
2.5
7.335e+38
0.2
1.039e+40
2.7
59
B2u
366
374
374
366
60
B1u
374
375
375
375
61
B2g
375
377
377
377
9.268e+38
0.2
1.274e+39
0.3
2.201e+39
0.6
62
B3g
377
378
379
400
1.176e+39
0.3
1.618e+39
0.4
2.794e+39
0.7
63
B2u
400
400
402
402
64
B1g
402
402
407
402
9.894e+39
2.6
1.360e+40
3.5
2.350e+40
6.1
65
A1g
407
407
409
407
2.108e+40
5.5
8.112e+39
2.1
2.919e+40
7.6
66
Au
409
409
414
409
67
B3u
432
432
432
432
68
B1g
447
447
447
447
3.465e+39
0.9
4.764e+39
1.2
8.229e+39
2.1
69
Au
450
450
450
450
70
B2g
458
458
458
458
1.238e+40
3.2
1.702e+40
4.4
2.940e+40
7.7
71
B3g
461
461
461
461
5.952e+39
1.6
8.184e+39
2.1
1.414e+40
3.7
72
B2u
463
463
478
463
73
B1u
478
478
481
486
74
A1g
486
486
486
490
1.482e+40
3.9
7.010e+39
1.8
2.183e+40
5.7
75
B3u
490
491
490
499
76
B3u
512
515
512
512
77
B1g
515
524
515
515
1.091e+40
2.8
1.500e+40
3.9
2.591e+40
6.8
78
B1g
524
526
524
524
1.502e+40
3.9
2.066e+40
5.4
3.568e+40
9.3
79
B2u
526
535
542
526
80
A1g
542
542
546
542
3.247e+39
0.8
1.699e+39
0.4
4.946e+39
1.3
81
B1u
679
679
679
680
82
Au
680
680
680
682
83
B3g
689
689
689
689
1.053e+39
0.3
1.448e+39
0.4
2.501e+39
0.7
84
B2g
691
691
691
691
1.389e+38
0.0
1.910e+38
0.0
3.299e+38
0.1
85
B3u
759
761
759
759
86
B2u
761
778
761
761
87
B1u
778
779
778
779
88
B3g
779
784
779
791
2.516e+40
6.6
3.459e+40
9.0
5.974e+40
15.6
89
A1g
791
791
791
794
2.531e+41
66.0
1.538e+40
4.0
2.685e+41
70.0
90
B3u
794
796
794
796
91
Au
796
797
796
797
92
B2g
797
800
797
800
93
B2u
800
802
802
802
94
B1g
802
804
804
804
7.979e+39
2.1
1.097e+40
2.9
1.895e+40
4.9
95
B2u
804
806
807
807
96
B3u
807
812
812
812
97
A1g
812
836
842
842
3.807e+41
99.3
2.733e+39
0.7
3.834e+41
100.0
98
B1g
842
842
847
849
2.190e+39
0.6
3.011e+39
0.8
5.201e+39
1.4
99
A1g
849
849
849
862
5.219e+38
0.1
4.823e+37
0.0
5.701e+38
0.1
100
B2u
873
873
875
873
101
A1g
875
875
877
875
1.742e+41
45.4
5.581e+39
1.5
1.798e+41
46.9
102
B1g
877
877
912
877
2.155e+40
5.6
2.963e+40
7.7
5.118e+40
13.3
103
B1g
912
912
913
912
1.815e+39
0.5
2.495e+39
0.7
4.310e+39
1.1
104
B3u
913
914
914
913
105
B2u
3532
3532
3534
3532
106
B3u
3534
3534
3534
3534
107
Ag
3534
3536
3534
3534
8.473e+40
22.1
1.773e+39
0.5
8.650e+40
22.6
108
B1g
3536
3536
3536
3536
2.998e+39
0.8
4.122e+39
1.1
7.120e+39
1.9
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.