-    ANTIMONSELITE     -    Sb2Se3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  62  Pnma 
Lattice parameters (Å):  6.2411  2.1093  6.1639 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  62  Pnma 
Lattice parameters (Å):  12.2729  3.9370  11.3329 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sb:  0.5394  0.2500  0.1700 
Sb:  0.6424  0.7500  0.4670 
Se:  0.6328  0.7500  0.0466 
Se:  0.7100  0.2500  0.3115 
Se:  0.4522  0.7500  0.3671 
Sb:  0.9606  0.7500  0.6700 
Sb:  0.8576  0.2500  0.9670 
Se:  0.8672  0.2500  0.5466 
Se:  0.7900  0.7500  0.8115 
Se:  0.0478  0.2500  0.8671 
Sb:  0.4606  0.7500  0.8300 
Sb:  0.3576  0.2500  0.5330 
Se:  0.3672  0.2500  0.9534 
Se:  0.2900  0.7500  0.6885 
Se:  0.5478  0.2500  0.6329 
Sb:  0.0394  0.2500  0.3300 
Sb:  0.1424  0.7500  0.0330 
Se:  0.1328  0.7500  0.4534 
Se:  0.2100  0.2500  0.1885 
Se:  0.9522  0.7500  0.1329 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Au
9
9
9
9
5
B1u
28
28
28
28
6
B3u
28
29
28
33
7
B2g
35
35
35
35
6.971e+41
0.9
9.586e+41
1.3
1.656e+42
2.2
8
A1g
42
42
42
42
4.907e+42
6.6
3.663e+42
4.9
8.570e+42
11.6
9
B1g
43
43
43
43
5.527e+41
0.7
7.599e+41
1.0
1.313e+42
1.8
10
Au
47
47
47
47
3.677e+42
5.0
5.056e+42
6.8
8.732e+42
11.8
11
B3u
47
47
50
47
12
B1u
50
50
50
50
13
Au
50
50
50
50
4.025e+40
0.1
5.534e+40
0.1
9.559e+40
0.1
14
B1g
50
50
50
50
15
B1u
50
50
51
50
2.855e+42
3.9
3.925e+42
5.3
6.780e+42
9.2
16
B3u
53
54
53
53
17
A1g
60
60
60
60
3.551e+41
0.5
1.344e+41
0.2
4.894e+41
0.7
18
B3u
63
63
63
63
19
B2g
63
65
63
63
6.765e+41
0.9
9.302e+41
1.3
1.607e+42
2.2
20
B1u
70
70
70
80
21
A1g
80
80
80
83
1.221e+42
1.6
5.931e+40
0.1
1.280e+42
1.7
22
B2g
83
83
83
84
2.087e+42
2.8
2.870e+42
3.9
4.958e+42
6.7
23
B2u
84
84
86
84
24
B3u
86
86
88
86
25
B1u
88
88
90
90
26
Au
90
90
92
92
27
Ag
92
92
92
92
2.193e+42
3.0
2.970e+42
4.0
5.163e+42
7.0
28
B2g
92
92
97
97
8.061e+41
1.1
7.524e+41
1.0
1.558e+42
2.1
29
A1g
97
97
98
98
1.111e+42
1.5
2.403e+41
0.3
1.351e+42
1.8
30
B2g
98
98
104
101
6.384e+41
0.9
8.778e+41
1.2
1.516e+42
2.0
31
B1g
104
104
113
104
3.011e+42
4.1
4.140e+42
5.6
7.150e+42
9.7
32
B3g
113
113
113
113
8.673e+41
1.2
1.193e+42
1.6
2.060e+42
2.8
33
B3g
113
113
114
113
7.307e+41
1.0
1.005e+42
1.4
1.735e+42
2.3
34
A1g
114
114
122
114
3.746e+43
50.6
1.383e+42
1.9
3.884e+43
52.4
35
B2u
123
123
123
123
36
Au
123
123
126
123
37
B1u
126
126
129
129
38
B3u
129
129
129
129
39
B3g
129
130
130
130
1.036e+43
14.0
1.424e+43
19.2
2.460e+43
33.2
40
B1g
130
130
132
135
2.778e+41
0.4
3.819e+41
0.5
6.597e+41
0.9
41
B3g
142
142
142
142
1.294e+43
17.5
1.779e+43
24.0
3.073e+43
41.5
42
Au
144
144
144
144
43
B2u
144
144
145
144
44
B1g
145
145
156
145
1.150e+43
15.5
1.582e+43
21.3
2.732e+43
36.9
45
B1u
156
156
161
161
46
B3u
161
162
169
169
47
B2g
169
169
171
171
1.502e+40
0.0
2.065e+40
0.0
3.566e+40
0.0
48
A1g
171
171
181
179
3.069e+42
4.1
4.841e+41
0.7
3.553e+42
4.8
49
A1g
181
181
182
181
7.330e+43
98.9
7.922e+41
1.1
7.409e+43
100.0
50
B1u
183
183
183
184
51
B3u
184
187
184
187
52
B2g
187
187
187
188
9.175e+42
12.4
1.262e+43
17.0
2.179e+43
29.4
53
A1g
188
188
188
191
4.953e+43
66.8
6.540e+42
8.8
5.607e+43
75.7
54
B1u
195
195
195
198
55
B2g
198
198
198
200
2.359e+42
3.2
3.244e+42
4.4
5.603e+42
7.6
56
B3u
202
202
202
202
57
B2g
203
203
203
203
2.310e+42
3.1
3.177e+42
4.3
5.487e+42
7.4
58
A1g
206
206
206
206
1.545e+42
2.1
1.148e+42
1.5
2.693e+42
3.6
59
B3u
214
218
214
214
60
B1u
219
219
219
219
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.