-    VALENTINITE     -    Sb2O3

Theoretical atomic positions and lattice parameters at experimental volum from AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  56  Pccn 
Lattice parameters (Å):  2.5928  6.5877  2.8630 
Angles (°):  90.0  90.0  90.0 

Symmetry (theoretical): 

Space group:  56  Pccn 
Lattice parameters (Å):  5.0547  12.2376  5.3349 
Angles (°):  90.0  90.0  90.0 

Cell contents: 

Number of atoms:  20 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Sb:  0.0525  0.1271  0.1796 
O:  0.2500  0.2500  0.0252 
O:  0.1556  0.0586  0.8598 
Sb:  0.4475  0.3729  0.1796 
O:  0.3444  0.4414  0.8598 
Sb:  0.9475  0.6271  0.3204 
O:  0.7500  0.7500  0.4748 
O:  0.8444  0.5586  0.6402 
Sb:  0.5525  0.8729  0.3204 
O:  0.6556  0.9414  0.6402 
Sb:  0.9475  0.8729  0.8204 
O:  0.7500  0.7500  0.9748 
O:  0.8444  0.9414  0.1402 
Sb:  0.5525  0.6271  0.8204 
O:  0.6556  0.5586  0.1402 
Sb:  0.0525  0.3729  0.6796 
O:  0.2500  0.2500  0.5252 
O:  0.1556  0.4414  0.3598 
Sb:  0.4475  0.1271  0.6796 
O:  0.3444  0.0586  0.3598 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B2u
19
19
20
19
5
B2g
20
20
43
20
6
Au
43
43
54
43
7
B3u
58
70
58
58
8
A1g
70
75
70
70
4.777e+38
0.0
2.365e+38
0.0
7.143e+38
0.1
9
B3g
75
78
75
75
1.128e+40
0.9
1.551e+40
1.3
2.680e+40
2.2
10
B1g
100
100
100
100
3.381e+39
0.3
4.649e+39
0.4
8.029e+39
0.7
11
B2u
102
102
104
102
12
B3g
104
104
106
104
1.063e+39
0.1
1.462e+39
0.1
2.525e+39
0.2
13
B2g
106
106
117
106
2.836e+39
0.2
3.900e+39
0.3
6.736e+39
0.6
14
Au
117
117
130
117
15
B3u
130
131
134
130
16
B3g
134
134
140
134
1.033e+40
0.9
1.420e+40
1.2
2.453e+40
2.0
17
B1u
140
140
146
145
18
B2g
146
146
149
146
3.108e+39
0.3
4.274e+39
0.4
7.382e+39
0.6
19
Ag
149
149
149
149
2.250e+41
18.6
9.247e+39
0.8
2.343e+41
19.3
20
B1g
149
149
151
149
6.789e+40
5.6
7.725e+40
6.4
1.451e+41
12.0
21
B3g
151
151
156
151
4.048e+39
0.3
5.566e+39
0.5
9.614e+39
0.8
22
B1u
181
181
181
185
23
B2u
185
185
186
186
24
A1g
186
186
186
194
3.553e+40
2.9
2.627e+40
2.2
6.180e+40
5.1
25
B1g
194
194
194
196
9.562e+38
0.1
1.315e+39
0.1
2.271e+39
0.2
26
Au
203
203
203
203
27
B3u
210
211
210
210
28
A1g
213
213
213
213
1.206e+41
10.0
4.595e+39
0.4
1.252e+41
10.3
29
B2g
224
224
224
224
6.369e+40
5.3
8.758e+40
7.2
1.513e+41
12.5
30
B1u
235
235
235
239
31
B3g
262
262
262
262
3.505e+40
2.9
4.819e+40
4.0
8.323e+40
6.9
32
B2u
274
274
275
274
33
Au
276
276
276
276
34
B1g
284
284
284
284
5.068e+40
4.2
6.969e+40
5.8
1.204e+41
9.9
35
B2g
297
297
297
297
1.936e+39
0.2
2.662e+39
0.2
4.598e+39
0.4
36
A1g
298
298
298
298
1.202e+42
99.2
9.090e+39
0.8
1.212e+42
100.0
37
B3u
301
304
301
301
38
B1u
322
322
322
365
39
B2u
388
388
426
388
40
B3u
426
441
441
426
41
B1g
441
464
464
441
8.679e+40
7.2
1.193e+41
9.9
2.061e+41
17.0
42
Au
464
480
492
464
43
B2g
492
492
493
492
4.173e+40
3.4
5.738e+40
4.7
9.910e+40
8.2
44
B3g
493
493
497
493
4.310e+39
0.4
5.927e+39
0.5
1.024e+40
0.8
45
Au
497
497
505
497
46
A1g
505
505
532
505
5.942e+41
49.0
1.471e+40
1.2
6.089e+41
50.3
47
Ag
532
532
532
532
2.663e+39
0.2
3.662e+39
0.3
6.325e+39
0.5
48
Ag
532
532
532
532
1.637e+39
0.1
2.251e+39
0.2
3.887e+39
0.3
49
B1u
532
532
567
566
50
B1u
567
567
568
576
51
B3u
576
586
576
586
52
A1g
586
586
586
586
1.397e+41
11.5
8.429e+39
0.7
1.481e+41
12.2
53
B3g
586
595
586
603
3.132e+39
0.3
4.307e+39
0.4
7.439e+39
0.6
54
B2g
603
603
603
625
1.622e+40
1.3
2.230e+40
1.8
3.852e+40
3.2
55
Au
625
625
625
663
56
B3u
663
665
663
664
57
B1g
665
672
665
665
2.218e+38
0.0
3.050e+38
0.0
5.269e+38
0.0
58
B2g
672
673
672
672
4.738e+40
3.9
6.515e+40
5.4
1.125e+41
9.3
59
B2u
673
706
706
673
60
B3g
706
709
709
706
3.509e+39
0.3
4.825e+39
0.4
8.334e+39
0.7
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.