-    SIBIRSKITE     -    CaHBO3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  14  P2_1/a 
Lattice parameters (Å):  15.1920  5.6290  3.7067 
Angles (°):  90.0  104.5  90.0 

Symmetry (theoretical): 

Space group:  14  P2_1/a 
Lattice parameters (Å):  14.0081  5.1375  3.2813 
Angles (°):  90.0  103.0  90.0 

Cell contents: 

Number of atoms:  24 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Ca:  0.1635  0.0072  0.2578 
B:  0.1267  0.5037  0.8436 
H:  0.0050  0.7248  0.5140 
O:  0.2109  0.5127  0.1450 
O:  0.0831  0.7369  0.6964 
O:  0.0855  0.2730  0.6957 
Ca:  0.3365  0.5072  0.7422 
B:  0.3733  0.0037  0.1564 
H:  0.4950  0.2248  0.4860 
O:  0.2891  0.0127  0.8550 
O:  0.4169  0.2369  0.3036 
O:  0.4145  0.7730  0.3043 
Ca:  0.8365  0.9928  0.7422 
B:  0.8733  0.4963  0.1564 
H:  0.9950  0.2752  0.4860 
O:  0.7891  0.4873  0.8550 
O:  0.9169  0.2631  0.3036 
O:  0.9145  0.7270  0.3043 
Ca:  0.6635  0.4928  0.2578 
B:  0.6267  0.9963  0.8436 
H:  0.5050  0.7752  0.5140 
O:  0.7109  0.9873  0.1450 
O:  0.5831  0.7631  0.6964 
O:  0.5855  0.2270  0.6957 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
 

Parameters of the Calculation 


All the calculations have been done using the ABINIT software. This is a list of the most representative parameteres used during the Raman calculation.


Number of electronic bands: 26
k-points  
   grid: 1 4 6 
   number of shifts: 
   shifts: 0.5 0.5 0.5 
Kinetic energy cut-off: 40 Ha  [=1088.464 eV ]
eXchange-Correlation functional: LDA pw90 

Pseudopotentials: 
Ca:  calcium, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 0 local 
B:  boron, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
H:  hydrogen, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
O:  oxygen, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
 

Dielectric Properties 


We define:

  • The Born effective charges, also called dynamical charges, are tensors that correspond to the energy derivative with respect to atomic displacements and electric fields or, equivalently, to the change in atomic force due to an electric field: The sum of the Born effective charges of all nuclei in one cell must vanish, element by element, along each of the three directions of the space.
  • The dielectric tensors are the energy derivative with respect to two electric fields. They also relate the induced polarization to the external electric field.

Born effective charges (Z): 

Ca: 2.1275 -0.0043 -0.0073 
-0.0274 2.4027 -0.0028 
-0.0068 0.0058 2.3110 
Eig. Value: 2.1263 2.4036 2.3112 
B: 1.6102 0.0025 0.9094 
0.0143 2.2408 0.0454 
0.9271 0.0404 1.9449 
Eig. Value: 0.8438 2.2380 2.7140 
H: 1.8836 0.0346 0.9774 
0.0262 0.2772 0.0141 
0.9899 0.0261 0.9384 
Eig. Value: 2.5029 0.2766 0.3197 
O: -1.8819 -0.0260 -0.5656 
-0.0420 -1.3862 -0.0421 
-0.6243 -0.0286 -2.0600 
Eig. Value: -1.3689 -1.3847 -2.5746 
O: -1.8854 0.2137 -0.6964 
0.1533 -1.7021 0.2352 
-0.6799 0.2310 -1.5400 
Eig. Value: -2.5236 -1.6084 -0.9955 
O: -1.8539 -0.2176 -0.6175 
-0.1519 -1.8324 -0.2598 
-0.6060 -0.2659 -1.5942 
Eig. Value: -2.4948 -1.6986 -1.0871 
Ca: 2.1275 0.0043 -0.0073 
0.0274 2.4027 0.0028 
-0.0068 -0.0058 2.3110 
Eig. Value: 2.1263 2.4036 2.3112 
B: 1.6102 -0.0025 0.9094 
-0.0143 2.2408 -0.0454 
0.9271 -0.0404 1.9449 
Eig. Value: 0.8438 2.2380 2.7140 
H: 1.8836 -0.0346 0.9774 
-0.0262 0.2772 -0.0141 
0.9899 -0.0261 0.9384 
Eig. Value: 2.5029 0.2766 0.3197 
O: -1.8819 0.0260 -0.5656 
0.0420 -1.3862 0.0421 
-0.6243 0.0286 -2.0600 
Eig. Value: -1.3689 -1.3847 -2.5746 
O: -1.8854 -0.2137 -0.6964 
-0.1533 -1.7021 -0.2352 
-0.6799 -0.2310 -1.5400 
Eig. Value: -2.5236 -1.6084 -0.9955 
O: -1.8539 0.2176 -0.6175 
0.1519 -1.8324 0.2598 
-0.6060 0.2659 -1.5942 
Eig. Value: -2.4948 -1.6986 -1.0871 
Ca: 2.1275 -0.0043 -0.0073 
-0.0274 2.4027 -0.0028 
-0.0068 0.0058 2.3110 
Eig. Value: 2.1263 2.4036 2.3112 
B: 1.6102 0.0025 0.9094 
0.0143 2.2408 0.0454 
0.9271 0.0404 1.9449 
Eig. Value: 0.8438 2.2380 2.7140 
H: 1.8836 0.0346 0.9774 
0.0262 0.2772 0.0141 
0.9899 0.0261 0.9384 
Eig. Value: 2.5029 0.2766 0.3197 
O: -1.8819 -0.0260 -0.5656 
-0.0420 -1.3862 -0.0421 
-0.6243 -0.0286 -2.0600 
Eig. Value: -1.3689 -1.3847 -2.5746 
O: -1.8854 0.2137 -0.6964 
0.1533 -1.7021 0.2352 
-0.6799 0.2310 -1.5400 
Eig. Value: -2.5236 -1.6084 -0.9955 
O: -1.8539 -0.2176 -0.6175 
-0.1519 -1.8324 -0.2598 
-0.6060 -0.2659 -1.5942 
Eig. Value: -2.4948 -1.6986 -1.0871 
Ca: 2.1275 0.0043 -0.0073 
0.0274 2.4027 0.0028 
-0.0068 -0.0058 2.3110 
Eig. Value: 2.1263 2.4036 2.3112 
B: 1.6102 -0.0025 0.9094 
-0.0143 2.2408 -0.0454 
0.9271 -0.0404 1.9449 
Eig. Value: 0.8438 2.2380 2.7140 
H: 1.8836 -0.0346 0.9774 
-0.0262 0.2772 -0.0141 
0.9899 -0.0261 0.9384 
Eig. Value: 2.5029 0.2766 0.3197 
O: -1.8819 0.0260 -0.5656 
0.0420 -1.3862 0.0421 
-0.6243 0.0286 -2.0600 
Eig. Value: -1.3689 -1.3847 -2.5746 
O: -1.8854 -0.2137 -0.6964 
-0.1533 -1.7021 -0.2352 
-0.6799 -0.2310 -1.5400 
Eig. Value: -2.5236 -1.6084 -0.9955 
O: -1.8539 0.2176 -0.6175 
0.1519 -1.8324 0.2598 
-0.6060 0.2659 -1.5942 
Eig. Value: -2.4948 -1.6986 -1.0871 
Atom type 

Dielectric tensors: 

 
Ɛ2.8248 0.0000 0.2717 
0.0000 2.7824 0.0000 
0.2717 0.0000 2.8805 
Eig. Value: 2.5796 2.7824 3.1258 
Refractive index (N): 1.6807 -0.0000 0.5212 
-0.0000 1.6680 -0.0000 
0.5212 -0.0000 1.6972 
Eig. Value: 1.6061 1.6680 1.7680 
Ɛ00.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
Eig. Value: 0.0000 0.0000 0.0000 
 

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Ag
41
41
41
41
8.173e+38
0.8
5.648e+38
0.6
1.382e+39
1.4
5
Bg
55
55
55
55
6
Ag
109
109
109
109
7.255e+37
0.1
3.653e+37
0.0
1.091e+38
0.1
7
Bu
120
120
120
120
8
Bg
125
125
125
125
1.622e+38
0.2
2.050e+38
0.2
3.672e+38
0.4
9
Au
135
135
135
135
10
Ag
158
158
158
158
1.352e+39
1.3
1.076e+39
1.1
2.428e+39
2.4
11
Bg
163
163
163
163
3.539e+39
3.5
5.971e+39
5.9
9.511e+39
9.4
12
Bg
176
176
176
176
2.628e+39
2.6
4.427e+39
4.4
7.055e+39
7.0
13
Au
198
198
205
198
14
Ag
205
205
219
205
1.460e+39
1.4
7.179e+38
0.7
2.178e+39
2.2
15
Au
221
221
226
221
16
Ag
226
226
229
226
4.080e+39
4.0
3.468e+39
3.4
7.548e+39
7.5
17
Bg
229
229
231
229
4.766e+39
4.7
7.768e+39
7.7
1.253e+40
12.4
18
Bu
232
234
232
233
19
Au
235
235
236
235
20
Bu
236
243
242
236
21
Au
243
246
259
243
22
Bu
259
265
265
260
23
Ag
265
268
268
265
2.387e+39
2.4
9.146e+38
0.9
3.301e+39
3.3
24
Au
268
278
284
268
25
Ag
284
284
291
284
1.881e+40
18.6
6.737e+39
6.7
2.555e+40
25.3
26
Bg
291
291
293
291
4.848e+38
0.5
6.917e+38
0.7
1.176e+39
1.2
27
Bu
293
309
309
294
28
Bg
309
316
315
309
6.342e+38
0.6
6.744e+38
0.7
1.309e+39
1.3
29
Au
325
325
325
325
30
Ag
331
331
331
331
5.633e+39
5.6
1.181e+39
1.2
6.814e+39
6.7
31
Bu
332
338
332
338
32
Bg
338
374
338
374
4.981e+39
4.9
5.322e+39
5.3
1.030e+40
10.2
33
Ag
374
386
374
389
1.862e+39
1.8
4.308e+38
0.4
2.293e+39
2.3
34
Au
395
395
409
395
35
Bg
409
409
419
409
2.568e+39
2.5
2.730e+39
2.7
5.299e+39
5.2
36
Bu
419
422
419
422
37
Ag
500
500
500
500
1.662e+40
16.5
1.182e+40
11.7
2.844e+40
28.2
38
Bg
513
513
513
513
7.469e+38
0.7
8.240e+38
0.8
1.571e+39
1.6
39
Ag
625
625
625
625
1.566e+39
1.6
1.440e+39
1.4
3.006e+39
3.0
40
Ag
625
625
625
625
1.833e+39
1.8
1.686e+39
1.7
3.519e+39
3.5
41
Bu
630
631
630
633
42
Bg
633
633
633
633
2.176e+36
0.0
3.651e+36
0.0
5.827e+36
0.0
43
Bu
680
684
680
680
44
Bu
684
686
684
686
45
Au
686
686
686
686
46
Bg
686
687
686
687
1.008e+38
0.1
1.567e+38
0.2
2.576e+38
0.3
47
Ag
687
707
687
707
1.142e+40
11.3
1.701e+39
1.7
1.312e+40
13.0
48
Au
707
713
714
720
49
Ag
900
900
900
900
8.741e+40
86.6
1.358e+40
13.4
1.010e+41
100.0
50
Bg
902
902
902
902
1.857e+38
0.2
2.681e+38
0.3
4.538e+38
0.4
51
Bu
911
920
911
918
52
Au
920
921
920
920
53
Ag
1034
1034
1034
1034
1.605e+40
15.9
1.753e+40
17.4
3.357e+40
33.2
54
Bg
1037
1037
1037
1037
4.475e+38
0.4
4.922e+38
0.5
9.397e+38
0.9
55
Ag
1205
1205
1205
1205
1.232e+38
0.1
9.205e+37
0.1
2.153e+38
0.2
56
Bg
1206
1206
1206
1206
2.887e+38
0.3
3.071e+38
0.3
5.958e+38
0.6
57
Bu
1208
1231
1208
1233
58
Au
1233
1233
1233
1243
59
Bu
1247
1314
1247
1314
60
Au
1314
1317
1319
1318
61
Bu
1319
1339
1339
1339
62
Ag
1339
1353
1340
1353
1.220e+39
1.2
1.008e+39
1.0
2.228e+39
2.2
63
Au
1353
1367
1357
1374
64
Bg
1378
1378
1378
1378
2.408e+37
0.0
4.062e+37
0.0
6.470e+37
0.1
65
Bu
1431
1436
1431
1436
66
Au
1436
1438
1503
1438
67
Bg
1503
1503
1504
1503
1.084e+39
1.1
1.520e+39
1.5
2.604e+39
2.6
68
Ag
1504
1504
1505
1504
7.843e+39
7.8
3.960e+39
3.9
1.180e+40
11.7
69
Ag
1557
1557
1557
1557
1.766e+40
17.5
1.398e+40
13.8
3.164e+40
31.3
70
Bg
1562
1562
1562
1562
4.594e+38
0.5
6.910e+38
0.7
1.150e+39
1.1
71
Bu
1733
2047
1733
1834
72
Au
2116
2116
2116
2116
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.
 

Single Crystal Raman spectra

Single crystal Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

The Raman measurements performed on single crystals employ polarized lasers and allow for the selection of specific elements of the individual Raman tensors of the Raman-active modes.

By convention, in the following we assume a measurement as X(XZ)Z, i.e. incident laser polarized along the X axis, emergent light polarized along the Z axis. If the crystal is aligned with the xyz reference frame, we sample the αxz element. As you rotate the crystal you can sample other entries of the Raman tensor or various linear combineations.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 


Choose the orientation of the crystal with respect to the reference system:

 
Rotation around X axis:
Rotation around Z axis:
Rotation around Y axis: