-    TARBUTTITE     -    Zn2PO4OH

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  P-1 
Lattice parameters (Å):  2.9378  3.0164  3.4241 
Angles (°):  102.67  102.81  86.88 

Symmetry (theoretical): 

Space group:  P-1 
Lattice parameters (Å):  0.5292  0.5292  0.5292 
Angles (°):  102.42  103.10  87.08 

Cell contents: 

Number of atoms:  18 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Zn:  0.3859  0.2480  0.4939 
Zn:  0.0274  0.7402  0.1874 
P:  0.8321  0.2508  0.2751 
O:  0.7651  0.9915  0.1486 
O:  0.9448  0.3861  0.1347 
O:  0.5941  0.3842  0.3299 
O:  0.9737  0.7526  0.5099 
O:  0.3610  0.8941  0.2928 
H:  0.4426  0.9140  0.1748 
Zn:  0.6141  0.7520  0.5061 
Zn:  0.9726  0.2598  0.8126 
P:  0.1679  0.7492  0.7249 
O:  0.2349  0.0085  0.8514 
O:  0.0552  0.6139  0.8653 
O:  0.4059  0.6158  0.6701 
O:  0.0263  0.2474  0.4901 
O:  0.6390  0.1059  0.7072 
H:  0.5574  0.0860  0.8252 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
Au
91
95
92
92
5
Ag
97
97
97
97
2.461e+39
1.8
2.328e+39
1.7
4.789e+39
3.5
6
Ag
110
110
110
110
7.015e+38
0.5
6.140e+38
0.4
1.315e+39
1.0
7
Ag
125
125
125
125
1.951e+39
1.4
1.517e+39
1.1
3.468e+39
2.5
8
Ag
134
134
134
134
6.027e+39
4.4
1.048e+39
0.8
7.075e+39
5.1
9
Au
139
141
141
140
10
Ag
157
157
157
157
6.244e+38
0.5
4.440e+38
0.3
1.068e+39
0.8
11
Au
161
161
162
168
12
Au
181
181
184
184
13
Ag
184
184
189
187
4.804e+39
3.5
1.304e+39
0.9
6.107e+39
4.4
14
Au
195
196
203
205
15
Ag
205
205
205
209
6.438e+39
4.7
4.260e+39
3.1
1.070e+40
7.7
16
Ag
209
209
209
216
4.321e+39
3.1
1.244e+39
0.9
5.565e+39
4.0
17
Au
222
228
235
246
18
Au
256
261
260
258
19
Ag
261
274
261
261
1.045e+40
7.6
2.545e+39
1.8
1.300e+40
9.4
20
Ag
274
279
274
274
4.378e+40
31.7
9.452e+38
0.7
4.473e+40
32.4
21
Ag
305
305
305
305
5.781e+39
4.2
4.708e+39
3.4
1.049e+40
7.6
22
Au
317
318
325
317
23
Au
327
338
349
334
24
Ag
349
349
357
349
1.439e+40
10.4
1.389e+39
1.0
1.578e+40
11.4
25
Au
358
359
360
360
26
Ag
360
360
366
360
8.642e+38
0.6
1.111e+39
0.8
1.975e+39
1.4
27
Ag
397
397
397
397
8.118e+39
5.9
2.978e+38
0.2
8.416e+39
6.1
28
Au
408
409
408
415
29
Au
422
424
431
422
30
Ag
449
449
449
449
7.254e+39
5.3
3.111e+39
2.3
1.037e+40
7.5
31
Au
460
464
462
461
32
Ag
468
468
468
468
3.355e+39
2.4
2.917e+39
2.1
6.272e+39
4.5
33
Au
519
522
519
519
34
Ag
525
525
525
525
8.242e+39
6.0
5.629e+39
4.1
1.387e+40
10.0
35
Au
561
566
561
565
36
Au
569
574
581
581
37
Ag
581
581
588
588
1.107e+40
8.0
9.069e+38
0.7
1.197e+40
8.7
38
Ag
589
589
589
589
4.942e+39
3.6
1.912e+39
1.4
6.854e+39
5.0
39
Ag
594
594
594
594
40
Au
594
614
599
607
3.564e+39
2.6
3.319e+39
2.4
6.883e+39
5.0
41
Ag
789
789
789
789
1.613e+40
11.7
1.571e+40
11.4
3.184e+40
23.1
42
Au
809
828
810
822
43
Au
917
917
920
918
44
Ag
940
940
940
940
2.711e+40
19.6
3.253e+39
2.4
3.036e+40
22.0
45
Ag
944
944
944
944
8.160e+40
59.1
1.110e+39
0.8
8.271e+40
59.9
46
Au
956
965
957
958
47
Au
974
997
975
996
48
Ag
1000
1000
1000
1000
2.169e+40
15.7
5.601e+39
4.1
2.729e+40
19.8
49
Au
1002
1040
1034
1032
50
Ag
1040
1055
1040
1040
4.285e+39
3.1
4.144e+39
3.0
8.430e+39
6.1
51
Ag
1055
1066
1055
1055
1.053e+40
7.6
6.677e+39
4.8
1.721e+40
12.5
52
Au
1066
1069
1117
1091
53
Au
3311
3322
3314
3319
54
Ag
3332
3332
3332
3332
1.209e+41
87.6
1.716e+40
12.4
1.381e+41
100.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.