-    BISCHOFITE     -    MgCl26(H2O)

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  Exp 12; Theo 5  Exp C2/m; Theo C2 
Lattice parameters (Å):  9.86  7.10  6.07 
Angles (°):  90  93.758  90 

Symmetry (theoretical): 

Space group:  Exp 12; Theo 5  Exp C2/m; Theo C2 
Lattice parameters (Å):  5.4417  5.4417  6.9865 
Angles (°):  76.99  103.00  105.89 

Cell contents: 

Number of atoms:  21 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Mg:  0.0224  0.0224  0.0000 
Cl:  0.3140  0.7235  0.6160 
O:  0.2621  0.8026  0.1761 
O:  0.1729  0.3001  0.1870 
H:  0.2783  0.7921  0.3242 
H:  0.2209  0.6154  0.1602 
H:  0.3450  0.2846  0.2727 
H:  0.0371  0.2573  0.2723 
Cl:  0.7235  0.3140  0.3840 
O:  0.8026  0.2621  0.8239 
O:  0.3001  0.1729  0.8130 
H:  0.7921  0.2783  0.6758 
H:  0.6154  0.2209  0.8398 
H:  0.2846  0.3450  0.7273 
H:  0.2573  0.0371  0.7277 
O:  0.8678  0.7639  0.8194 
H:  0.6926  0.7689  0.7404 
H:  0.8804  0.5821  0.8310 
O:  0.7639  0.8678  0.1806 
H:  0.7689  0.6926  0.2596 
H:  0.5821  0.8804  0.1690 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
A
5
5
5
5
2
B
5
5
5
5
3
B
6
6
6
6
4
B
57
60
57
60
2.742e+39
1.9
4.602e+39
3.3
7.344e+39
5.2
5
A
65
65
65
65
2.418e+39
1.7
1.115e+38
0.1
2.530e+39
1.8
6
B
93
93
93
93
9.422e+38
0.7
1.063e+39
0.8
2.005e+39
1.4
7
A
98
98
98
98
4.319e+39
3.1
5.009e+39
3.5
9.328e+39
6.6
8
A
98
98
104
98
1.269e+39
0.9
8.045e+38
0.6
2.074e+39
1.5
9
B
118
140
118
121
3.401e+39
2.4
5.678e+39
4.0
9.078e+39
6.4
10
B
161
162
161
165
2.052e+38
0.1
2.409e+38
0.2
4.462e+38
0.3
11
A
175
175
175
175
1.688e+39
1.2
1.296e+39
0.9
2.984e+39
2.1
12
B
201
202
201
202
4.216e+39
3.0
6.731e+39
4.8
1.095e+40
7.7
13
A
202
205
203
211
2.236e+39
1.6
1.452e+39
1.0
3.688e+39
2.6
14
A
234
234
237
234
4.174e+39
2.9
5.184e+39
3.7
9.357e+39
6.6
15
A
240
240
248
240
7.228e+38
0.5
3.352e+38
0.2
1.058e+39
0.7
16
B
248
260
259
270
8.430e+38
0.6
1.040e+39
0.7
1.883e+39
1.3
17
B
278
278
278
284
6.409e+37
0.0
7.258e+37
0.1
1.367e+38
0.1
18
A
293
293
294
293
1.274e+40
9.0
3.634e+39
2.6
1.638e+40
11.6
19
B
294
294
295
294
1.854e+38
0.1
2.550e+38
0.2
4.404e+38
0.3
20
A
307
307
313
307
2.738e+39
1.9
1.153e+39
0.8
3.891e+39
2.7
21
B
317
317
317
318
1.723e+39
1.2
2.514e+39
1.8
4.237e+39
3.0
22
A
324
324
328
324
3.163e+39
2.2
2.031e+39
1.4
5.194e+39
3.7
23
B
351
371
351
353
3.412e+37
0.0
4.220e+37
0.0
7.632e+37
0.1
24
A
409
409
420
409
9.887e+38
0.7
7.711e+38
0.5
1.760e+39
1.2
25
B
463
465
463
463
1.268e+39
0.9
1.640e+39
1.2
2.908e+39
2.1
26
B
484
488
484
488
1.777e+38
0.1
2.654e+38
0.2
4.431e+38
0.3
27
A
488
489
488
490
1.716e+39
1.2
1.843e+38
0.1
1.901e+39
1.3
28
B
516
520
516
519
2.713e+38
0.2
3.161e+38
0.2
5.874e+38
0.4
29
A
522
522
522
522
2.240e+39
1.6
1.287e+39
0.9
3.527e+39
2.5
30
B
580
597
580
584
1.340e+39
0.9
2.009e+39
1.4
3.349e+39
2.4
31
A
600
600
600
600
5.651e+39
4.0
7.598e+39
5.4
1.325e+40
9.4
32
B
641
641
641
642
8.652e+39
6.1
1.245e+40
8.8
2.110e+40
14.9
33
A
642
642
652
647
2.207e+39
1.6
1.426e+39
1.0
3.632e+39
2.6
34
A
725
725
727
725
9.521e+38
0.7
5.526e+38
0.4
1.505e+39
1.1
35
A
744
744
758
744
7.862e+39
5.6
4.111e+39
2.9
1.197e+40
8.5
36
B
760
760
760
761
1.472e+39
1.0
1.748e+39
1.2
3.221e+39
2.3
37
B
761
764
761
764
1.073e+40
7.6
1.699e+40
12.0
2.772e+40
19.6
38
B
805
805
805
817
4.974e+38
0.4
8.276e+38
0.6
1.325e+39
0.9
39
A
821
821
836
821
4.433e+39
3.1
3.085e+39
2.2
7.518e+39
5.3
40
B
841
843
841
843
1.701e+38
0.1
2.854e+38
0.2
4.555e+38
0.3
41
A
843
876
845
846
2.700e+39
1.9
1.721e+39
1.2
4.421e+39
3.1
42
B
902
906
902
906
1.466e+38
0.1
1.586e+38
0.1
3.051e+38
0.2
43
A
906
909
930
906
3.211e+39
2.3
3.502e+39
2.5
6.713e+39
4.7
44
A
1060
1060
1071
1060
5.923e+38
0.4
5.358e+38
0.4
1.128e+39
0.8
45
B
1079
1092
1079
1080
1.677e+38
0.1
2.789e+38
0.2
4.466e+38
0.3
46
B
1492
1492
1492
1492
2.022e+38
0.1
2.817e+38
0.2
4.839e+38
0.3
47
A
1507
1507
1507
1507
1.960e+39
1.4
7.167e+38
0.5
2.676e+39
1.9
48
B
1602
1603
1602
1607
2.535e+37
0.0
3.062e+37
0.0
5.596e+37
0.0
49
A
1607
1607
1607
1613
1.174e+39
0.8
1.419e+39
1.0
2.592e+39
1.8
50
B
1631
1632
1631
1631
5.005e+38
0.4
7.395e+38
0.5
1.240e+39
0.9
51
A
1634
1634
1646
1634
1.715e+39
1.2
1.420e+39
1.0
3.135e+39
2.2
52
A
2889
2889
2890
2889
1.001e+41
70.7
4.147e+40
29.3
1.416e+41
100.0
53
B
2926
2943
2926
2926
9.398e+39
6.6
1.006e+40
7.1
1.946e+40
13.7
54
B
2972
2972
2972
2978
8.916e+39
6.3
1.144e+40
8.1
2.036e+40
14.4
55
A
2978
2978
2980
3025
1.130e+41
79.8
8.666e+39
6.1
1.217e+41
86.0
56
B
3027
3030
3027
3030
2.368e+40
16.7
2.532e+40
17.9
4.900e+40
34.6
57
A
3030
3048
3101
3050
1.903e+40
13.4
2.585e+40
18.3
4.488e+40
31.7
58
B
3160
3165
3160
3165
4.585e+40
32.4
6.715e+40
47.4
1.130e+41
79.8
59
A
3165
3171
3165
3165
4.498e+40
31.8
2.740e+40
19.4
7.237e+40
51.1
60
B
3198
3203
3198
3203
3.097e+40
21.9
3.611e+40
25.5
6.708e+40
47.4
61
A
3203
3216
3213
3209
2.131e+40
15.1
6.188e+39
4.4
2.750e+40
19.4
62
B
3217
3232
3217
3230
5.181e+39
3.7
8.477e+39
6.0
1.366e+40
9.6
63
A
3232
3300
3269
3232
1.327e+41
93.7
6.170e+39
4.4
1.389e+41
98.1
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.