-    TUGTUPITE     -    Na4BeAlSi4O12Cl

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD 

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  82  I-4 
Lattice parameters (Å):  8.6400  8.6400  8.8730 
Angles (°):  90  90  90 

Symmetry (theoretical): 

Space group:  82  I-4 
Lattice parameters (Å):  7.5504  7.5504  7.5504 
Angles (°):  110.22  110.22  107.97 

Cell contents: 

Number of atoms:  23 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Al:  0.2500  0.7500  0.5000 
Be:  0.7500  0.2500  0.5000 
Si:  0.7499  0.5085  0.2668 
O:  0.5808  0.5970  0.2856 
O:  0.6839  0.9977  0.3828 
O:  0.2871  0.5671  0.5768 
Na:  0.3890  0.3463  0.3623 
Cl:  0.0000  0.0000  0.0000 
Si:  0.2416  0.4831  0.7332 
O:  0.3114  0.2952  0.7144 
O:  0.6149  0.3011  0.6172 
O:  0.9904  0.7104  0.4232 
Na:  0.9840  0.0267  0.6377 
Si:  0.4915  0.7584  0.2415 
O:  0.4030  0.6886  0.9839 
O:  0.0023  0.3851  0.6862 
O:  0.4329  0.0096  0.7200 
Na:  0.6537  0.0160  0.0427 
Si:  0.5169  0.2501  0.7585 
O:  0.7048  0.4192  0.0161 
O:  0.6989  0.3161  0.3138 
O:  0.2896  0.7129  0.2800 
Na:  0.9733  0.6110  0.9573 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
E
98
98
98
98
3.662e+37
0.3
6.168e+37
0.5
9.831e+37
0.7
5
E
98
99
99
98
3.663e+37
0.3
3.903e+37
0.3
7.566e+37
0.6
6
B
100
100
100
102
7.817e+37
0.6
7.239e+37
0.5
1.506e+38
1.1
7
A
102
102
102
103
3.389e+37
0.3
1.130e+37
0.1
4.519e+37
0.3
8
E
111
111
111
111
4.511e+37
0.3
5.216e+37
0.4
9.726e+37
0.7
9
E
111
111
111
111
4.511e+37
0.3
7.190e+37
0.5
1.170e+38
0.9
10
B
116
116
116
118
2.319e+38
1.7
3.145e+38
2.3
5.465e+38
4.1
11
E
124
124
124
124
1.045e+38
0.8
1.716e+38
1.3
2.761e+38
2.1
12
E
124
129
129
124
1.045e+38
0.8
1.156e+38
0.9
2.201e+38
1.6
13
A
139
139
139
139
6.907e+37
0.5
2.984e+37
0.2
9.890e+37
0.7
14
B
140
140
140
141
2.693e+38
2.0
3.208e+38
2.4
5.901e+38
4.4
15
E
148
148
148
148
3.046e+38
2.3
4.188e+38
3.1
7.234e+38
5.4
16
E
148
153
153
148
3.046e+38
2.3
4.188e+38
3.1
7.234e+38
5.4
17
A
163
163
163
163
9.375e+37
0.7
1.394e+35
0.0
9.389e+37
0.7
18
B
167
167
167
172
7.859e+37
0.6
9.099e+37
0.7
1.696e+38
1.3
19
E
174
174
174
174
6.283e+37
0.5
7.166e+37
0.5
1.345e+38
1.0
20
E
174
181
181
174
6.283e+37
0.5
1.011e+38
0.8
1.640e+38
1.2
21
B
192
192
192
198
7.971e+37
0.6
1.091e+38
0.8
1.888e+38
1.4
22
A
198
198
198
208
1.359e+39
10.1
6.393e+34
0.0
1.359e+39
10.1
23
E
208
208
208
208
9.934e+37
0.7
1.666e+38
1.2
2.660e+38
2.0
24
E
208
220
220
211
9.934e+37
0.7
1.065e+38
0.8
2.059e+38
1.5
25
B
239
239
239
242
1.763e+38
1.3
2.123e+38
1.6
3.886e+38
2.9
26
A
242
242
242
243
1.499e+39
11.2
3.512e+37
0.3
1.534e+39
11.4
27
A
252
252
252
252
8.837e+39
65.8
9.817e+37
0.7
8.935e+39
66.5
28
E
284
284
284
284
2.359e+37
0.2
3.561e+37
0.3
5.919e+37
0.4
29
E
284
284
284
284
2.359e+37
0.2
2.925e+37
0.2
5.284e+37
0.4
30
B
285
285
285
285
5.619e+38
4.2
7.658e+38
5.7
1.328e+39
9.9
31
B
306
306
306
307
1.606e+38
1.2
1.994e+38
1.5
3.600e+38
2.7
32
E
312
312
312
312
1.765e+38
1.3
2.149e+38
1.6
3.914e+38
2.9
33
E
312
313
313
312
1.766e+38
1.3
2.707e+38
2.0
4.472e+38
3.3
34
A
319
319
319
319
5.315e+38
4.0
2.923e+38
2.2
8.238e+38
6.1
35
B
371
371
371
371
7.333e+38
5.5
9.959e+38
7.4
1.729e+39
12.9
36
E
377
377
377
377
2.726e+38
2.0
2.903e+38
2.2
5.628e+38
4.2
37
E
377
377
377
377
2.726e+38
2.0
4.593e+38
3.4
7.319e+38
5.4
38
A
426
426
426
426
2.216e+39
16.5
2.969e+33
0.0
2.216e+39
16.5
39
E
426
426
426
426
3.057e+38
2.3
5.158e+38
3.8
8.215e+38
6.1
40
E
426
427
427
426
3.057e+38
2.3
3.248e+38
2.4
6.305e+38
4.7
41
A
444
444
444
444
1.103e+40
82.1
1.515e+38
1.1
1.118e+40
83.2
42
B
445
445
445
453
1.679e+37
0.1
1.286e+37
0.1
2.965e+37
0.2
43
E
453
453
453
453
2.758e+38
2.1
2.931e+38
2.2
5.689e+38
4.2
44
E
453
466
466
455
2.758e+38
2.1
4.654e+38
3.5
7.413e+38
5.5
45
B
466
485
485
485
2.666e+37
0.2
3.111e+37
0.2
5.777e+37
0.4
46
A
485
491
491
496
2.039e+39
15.2
5.733e+38
4.3
2.612e+39
19.4
47
A
534
534
534
534
9.803e+39
73.0
3.663e+37
0.3
9.840e+39
73.2
48
E
593
593
593
593
2.539e+37
0.2
2.818e+37
0.2
5.357e+37
0.4
49
E
593
596
596
593
2.539e+37
0.2
4.165e+37
0.3
6.704e+37
0.5
50
A
607
607
607
607
4.365e+39
32.5
4.282e+34
0.0
4.366e+39
32.5
51
B
631
631
631
636
6.733e+38
5.0
5.059e+38
3.8
1.179e+39
8.8
52
E
699
699
699
699
2.058e+36
0.0
2.205e+36
0.0
4.263e+36
0.0
53
E
699
711
711
699
2.058e+36
0.0
3.454e+36
0.0
5.512e+36
0.0
54
B
711
711
711
719
2.246e+37
0.2
2.945e+37
0.2
5.191e+37
0.4
55
E
729
729
729
729
2.237e+37
0.2
2.513e+37
0.2
4.750e+37
0.4
56
E
729
749
749
729
2.237e+37
0.2
3.638e+37
0.3
5.875e+37
0.4
57
B
753
753
753
761
3.040e+38
2.3
4.165e+38
3.1
7.205e+38
5.4
58
B
919
919
919
922
1.420e+38
1.1
1.526e+38
1.1
2.945e+38
2.2
59
E
947
947
947
947
5.466e+38
4.1
6.959e+38
5.2
1.243e+39
9.2
60
E
947
954
954
947
5.466e+38
4.1
8.073e+38
6.0
1.354e+39
10.1
61
A
954
997
997
954
2.899e+37
0.2
9.663e+36
0.1
3.865e+37
0.3
62
B
1004
1004
1004
1018
2.606e+38
1.9
3.426e+38
2.6
6.032e+38
4.5
63
E
1018
1018
1018
1018
7.982e+38
5.9
8.744e+38
6.5
1.673e+39
12.4
64
E
1018
1028
1028
1028
7.982e+38
5.9
1.321e+39
9.8
2.119e+39
15.8
65
A
1028
1033
1033
1035
1.270e+40
94.6
7.315e+38
5.4
1.344e+40
100.0
66
B
1036
1036
1036
1038
3.201e+38
2.4
2.422e+38
1.8
5.622e+38
4.2
67
E
1038
1038
1038
1038
1.153e+38
0.9
1.282e+38
1.0
2.435e+38
1.8
68
E
1038
1075
1075
1104
1.153e+38
0.9
1.890e+38
1.4
3.044e+38
2.3
69
A
1106
1106
1106
1106
1.049e+40
78.0
3.929e+38
2.9
1.088e+40
81.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.