-    Magnesium Sulfide Hexahydrate     -    MgSO36H2O

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

Crystal Structure 


Because of the translational symmetry all the calculations are performed in the primitive unit cell and not in the conventional unit cell. The following information regarding the structure is given with respect to this primitive unit cell, which sometimes can take an unintuitive shape.

Symmetry (experimental): 

Space group:  146  R3 
Lattice parameters (Å):  5.1686  7.8678  6.4667 
Angles (°):  96.25  96.25  96.25 

Symmetry (theoretical): 

Space group:  146  R3 
Lattice parameters (Å):  5.7507  5.7507  5.7507 
Angles (°):  96.30  96.30  96.30 

Cell contents: 

Number of atoms:  23 
Number of atom types: 
Chemical composition: 

Atomic positions (theoretical):

Mg:  0.0047  0.0047  0.0047 
S:  0.4933  0.4933  0.4933 
O:  0.7500  0.5175  0.4380 
O:  0.8608  0.6645  0.0461 
O:  0.1161  0.3265  0.9257 
H:  0.8132  0.6249  0.2014 
H:  0.7222  0.5906  0.9275 
H:  0.0417  0.4694  0.9772 
H:  0.2653  0.3771  0.8636 
O:  0.4380  0.7500  0.5175 
O:  0.0461  0.8608  0.6645 
O:  0.9257  0.1161  0.3265 
H:  0.2014  0.8132  0.6249 
H:  0.9275  0.7222  0.5906 
H:  0.9772  0.0417  0.4694 
H:  0.8636  0.2653  0.3771 
O:  0.5175  0.4380  0.7500 
O:  0.6645  0.0461  0.8608 
O:  0.3265  0.9257  0.1161 
H:  0.6249  0.2014  0.8132 
H:  0.5906  0.9275  0.7222 
H:  0.4694  0.9772  0.0417 
H:  0.3771  0.8636  0.2653 
Atom type 

We have listed here the reduced coordinates of all the atoms in the primitive unit cell.
It is enough to know only the position of the atoms from the assymetrical unit cell and then use the symmetry to build the whole crystal structure.

Visualization of the crystal structure: 

Size:

Nx:  Ny:  Nz: 
You can define the size of the supercell to be displayed in the jmol panel as integer translations along the three crys­tallo­gra­phic axis.
Please note that the structure is represented using the pri­mi­tive cell, and not the conventional one.
     

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
E
100
101
100
100
6.051e+38
0.5
7.068e+38
0.6
1.312e+39
1.0
5
E
101
101
101
101
5.983e+38
0.5
6.910e+38
0.5
1.289e+39
1.0
6
E
118
118
118
118
4.844e+38
0.4
7.337e+38
0.6
1.218e+39
1.0
7
E
118
119
119
118
4.842e+38
0.4
4.711e+38
0.4
9.552e+38
0.7
8
A
130
130
130
130
5.581e+38
0.4
1.235e+36
0.0
5.593e+38
0.4
9
A
143
143
143
143
2.833e+39
2.2
4.238e+36
0.0
2.837e+39
2.2
10
E
196
196
196
196
6.598e+38
0.5
5.032e+38
0.4
1.163e+39
0.9
11
E
196
198
198
196
6.600e+38
0.5
8.693e+38
0.7
1.529e+39
1.2
12
A
198
205
205
210
1.478e+39
1.2
7.303e+37
0.1
1.551e+39
1.2
13
A
250
250
250
254
2.028e+39
1.6
2.268e+37
0.0
2.050e+39
1.6
14
E
254
254
254
254
1.201e+39
0.9
1.938e+39
1.5
3.139e+39
2.5
15
E
254
261
261
266
1.200e+39
0.9
1.374e+39
1.1
2.574e+39
2.0
16
E
280
280
280
280
9.039e+38
0.7
9.376e+38
0.7
1.841e+39
1.4
17
E
280
281
281
280
9.034e+38
0.7
1.325e+39
1.0
2.228e+39
1.7
18
A
282
282
282
284
1.043e+39
0.8
2.208e+37
0.0
1.065e+39
0.8
19
A
320
320
320
329
4.085e+39
3.2
5.106e+38
0.4
4.596e+39
3.6
20
E
329
329
329
329
7.607e+38
0.6
6.860e+38
0.5
1.447e+39
1.1
21
E
329
352
352
332
7.603e+38
0.6
7.939e+38
0.6
1.554e+39
1.2
22
E
360
360
360
360
1.178e+39
0.9
1.628e+39
1.3
2.806e+39
2.2
23
E
360
363
363
360
1.179e+39
0.9
1.420e+39
1.1
2.599e+39
2.0
24
A
397
397
397
397
3.812e+38
0.3
9.833e+37
0.1
4.795e+38
0.4
25
A
453
453
453
460
1.916e+39
1.5
1.671e+38
0.1
2.083e+39
1.6
26
E
465
465
465
465
3.489e+38
0.3
4.787e+38
0.4
8.276e+38
0.6
27
E
465
469
469
465
3.488e+38
0.3
5.157e+38
0.4
8.645e+38
0.7
28
E
494
494
494
494
5.399e+39
4.2
5.576e+39
4.4
1.097e+40
8.6
29
E
494
497
497
494
5.399e+39
4.2
5.860e+39
4.6
1.126e+40
8.8
30
A
610
610
610
617
3.871e+39
3.0
2.550e+39
2.0
6.421e+39
5.0
31
A
670
670
670
674
4.175e+38
0.3
1.021e+37
0.0
4.277e+38
0.3
32
E
679
679
679
679
4.409e+38
0.3
5.001e+38
0.4
9.409e+38
0.7
33
E
679
682
682
679
4.409e+38
0.3
4.087e+38
0.3
8.497e+38
0.7
34
A
718
718
718
729
4.453e+39
3.5
5.774e+38
0.5
5.030e+39
3.9
35
E
729
729
729
729
1.785e+39
1.4
1.997e+39
1.6
3.781e+39
3.0
36
E
729
738
738
732
1.785e+39
1.4
2.557e+39
2.0
4.342e+39
3.4
37
A
782
782
782
782
2.650e+38
0.2
2.652e+37
0.0
2.915e+38
0.2
38
E
794
794
794
794
4.843e+38
0.4
6.337e+38
0.5
1.118e+39
0.9
39
E
794
797
797
794
4.840e+38
0.4
6.761e+38
0.5
1.160e+39
0.9
40
E
802
802
802
802
1.889e+39
1.5
1.813e+39
1.4
3.702e+39
2.9
41
E
802
815
814
802
1.889e+39
1.5
2.482e+39
1.9
4.371e+39
3.4
42
A
830
830
830
854
1.568e+39
1.2
1.013e+39
0.8
2.581e+39
2.0
43
E
877
877
877
877
3.108e+39
2.4
3.053e+39
2.4
6.161e+39
4.8
44
E
877
942
942
877
3.108e+39
2.4
3.901e+39
3.1
7.009e+39
5.5
45
A
942
942
942
950
5.891e+40
46.2
2.039e+39
1.6
6.094e+40
47.8
46
A
979
979
979
979
1.338e+38
0.1
9.414e+36
0.0
1.432e+38
0.1
47
E
979
979
979
979
1.307e+38
0.1
1.862e+38
0.1
3.169e+38
0.2
48
E
979
996
996
987
1.307e+38
0.1
2.011e+38
0.2
3.318e+38
0.3
49
A
1018
1018
1018
1021
1.599e+39
1.3
3.857e+38
0.3
1.984e+39
1.6
50
E
1031
1031
1031
1031
3.526e+38
0.3
3.816e+38
0.3
7.342e+38
0.6
51
E
1031
1039
1039
1031
3.527e+38
0.3
3.430e+38
0.3
6.957e+38
0.5
52
E
1601
1601
1601
1601
2.220e+38
0.2
2.889e+38
0.2
5.109e+38
0.4
53
E
1601
1604
1604
1601
2.220e+38
0.2
1.764e+38
0.1
3.984e+38
0.3
54
A
1610
1610
1610
1619
5.056e+38
0.4
1.843e+38
0.1
6.899e+38
0.5
55
E
1648
1648
1648
1648
1.844e+39
1.4
1.807e+39
1.4
3.651e+39
2.9
56
E
1648
1649
1649
1648
1.844e+39
1.4
3.082e+39
2.4
4.926e+39
3.9
57
A
1649
1654
1654
1649
2.497e+39
2.0
6.389e+37
0.1
2.561e+39
2.0
58
A
2845
2845
2845
2852
4.934e+40
38.7
3.201e+40
25.1
8.134e+40
63.7
59
E
2852
2852
2852
2852
1.103e+40
8.6
1.756e+40
13.8
2.859e+40
22.4
60
E
2852
2857
2856
2952
1.103e+40
8.6
1.067e+40
8.4
2.171e+40
17.0
61
E
2985
2985
2985
2985
1.367e+40
10.7
1.375e+40
10.8
2.742e+40
21.5
62
E
2985
2998
2998
2985
1.367e+40
10.7
2.116e+40
16.6
3.483e+40
27.3
63
A
2998
3041
3041
2999
1.150e+41
90.1
2.597e+39
2.0
1.176e+41
92.1
64
E
3145
3145
3145
3145
2.124e+40
16.6
2.667e+40
20.9
4.791e+40
37.5
65
E
3145
3153
3153
3145
2.124e+40
16.6
1.739e+40
13.6
3.863e+40
30.3
66
A
3153
3162
3162
3184
2.233e+40
17.5
3.751e+39
2.9
2.608e+40
20.4
67
E
3198
3198
3198
3198
1.585e+40
12.4
1.710e+40
13.4
3.295e+40
25.8
68
E
3198
3274
3274
3198
1.585e+40
12.4
1.442e+40
11.3
3.027e+40
23.7
69
A
3274
3286
3286
3274
1.260e+41
98.7
1.674e+39
1.3
1.276e+41
100.0
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.