-    SHORTITE     -    Ca2Na2(CO3)3

The crystal structure is fully relaxed (both unit cell parameters and atomic positions under symmetry constraints) starting from an experimental structure similar to the one reported in AMCSD

 

Parameters of the Calculation 


All the calculations have been done using the ABINIT software. This is a list of the most representative parameteres used during the Raman calculation.


Number of electronic bands: 26
k-points  
   grid: 6 6 6 
   number of shifts: 
   shifts: 0.5 0.5 0.5 
Kinetic energy cut-off: 40 Ha  [=1088.464 eV ]
eXchange-Correlation functional: LDA pw90 

Pseudopotentials: 
Ca:  calcium, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 0 local 
Na:  sodium, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local  
C:  carbon, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
O:  oxygen, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local 
 

Dielectric Properties 


We define:

  • The Born effective charges, also called dynamical charges, are tensors that correspond to the energy derivative with respect to atomic displacements and electric fields or, equivalently, to the change in atomic force due to an electric field: The sum of the Born effective charges of all nuclei in one cell must vanish, element by element, along each of the three directions of the space.
  • The dielectric tensors are the energy derivative with respect to two electric fields. They also relate the induced polarization to the external electric field.

Born effective charges (Z): 

Ca: 2.4497 -0.0000 -0.0000 
0.0000 2.1257 -0.3911 
-0.0000 -0.2063 2.2794 
Eig. Value: 2.4497 1.8941 2.5110 
Na: 0.9469 -0.0000 -0.0000 
-0.0000 1.2905 -0.0000 
0.0000 -0.0000 1.0736 
Eig. Value: 0.9469 1.2905 1.0736 
Na: 1.0533 -0.0000 0.0000 
-0.0000 1.1183 -0.0000 
-0.0000 -0.0000 1.0834 
Eig. Value: 1.0533 1.1183 1.0834 
C: 2.9818 0.0000 0.0000 
0.0000 1.9219 0.9483 
-0.0000 1.2038 1.0450 
Eig. Value: 2.9818 2.6454 0.3215 
O: -1.2253 -0.0000 -0.0000 
0.0000 -1.5753 -0.5519 
-0.0000 -0.6911 -1.1393 
Eig. Value: -1.2253 -2.0159 -0.6987 
O: -2.1376 -0.3863 -0.2658 
-0.4093 -1.1608 -0.1589 
-0.3060 -0.2915 -1.0688 
Eig. Value: -2.3711 -1.1124 -0.8837 
C: 0.2217 -0.0000 0.0000 
-0.0000 3.4184 -0.0000 
-0.0000 -0.0000 2.6341 
Eig. Value: 0.2217 3.4184 2.6341 
O: -0.7703 0.0000 0.0000 
0.0000 -1.4339 0.0000 
0.0000 0.0000 -2.1371 
Eig. Value: -0.7703 -1.4339 -2.1371 
O: -0.6568 0.0000 -0.0000 
0.0000 -2.3473 -0.6917 
-0.0000 -0.6020 -1.3745 
Eig. Value: -0.6568 -2.6702 -1.0516 
Ca: 2.4497 -0.0000 0.0000 
0.0000 2.1257 0.3911 
0.0000 0.2063 2.2794 
Eig. Value: 2.4497 1.8941 2.5110 
C: 2.9818 -0.0000 0.0000 
0.0000 1.9219 -0.9483 
0.0000 -1.2038 1.0450 
Eig. Value: 2.9818 2.6454 0.3215 
O: -1.2253 0.0000 -0.0000 
0.0000 -1.5753 0.5519 
0.0000 0.6911 -1.1393 
Eig. Value: -1.2253 -2.0159 -0.6987 
O: -2.1376 -0.3863 0.2658 
-0.4093 -1.1608 0.1589 
0.3060 0.2915 -1.0688 
Eig. Value: -2.3711 -1.1124 -0.8837 
O: -0.6568 0.0000 -0.0000 
0.0000 -2.3473 0.6917 
0.0000 0.6020 -1.3745 
Eig. Value: -0.6568 -2.6702 -1.0516 
O: -2.1376 0.3863 -0.2658 
0.4093 -1.1608 0.1589 
-0.3060 0.2915 -1.0688 
Eig. Value: -2.3711 -1.1124 -0.8837 
O: -2.1376 0.3863 0.2658 
0.4093 -1.1608 -0.1589 
0.3060 -0.2915 -1.0688 
Eig. Value: -2.3711 -1.1124 -0.8837 
Atom type 

Dielectric tensors: 

 
Ɛ2.4758 0.0000 0.0000 
0.0000 2.5177 0.0000 
0.0000 0.0000 2.3766 
Eig. Value: 2.4758 2.5177 2.3766 
Refractive index (N): 1.5735 0.0000 0.0000 
0.0000 1.5867 0.0000 
0.0000 0.0000 1.5416 
Eig. Value: 1.5735 1.5867 1.5416 
Ɛ00.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
Eig. Value: 0.0000 0.0000 0.0000 
 

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
B1/B2
119
130
119
119
9.724e+37
0.2
1.337e+38
0.2
2.309e+38
0.4
5
A2
130
135
130
130
1.417e+39
2.6
1.948e+39
3.6
3.365e+39
6.2
6
B1/B2
139
139
139
139
1.436e+39
2.6
1.974e+39
3.6
3.410e+39
6.3
7
B1/B2
150
153
150
150
6.948e+38
1.3
9.554e+38
1.8
1.650e+39
3.0
8
A1
153
154
153
157
2.130e+39
3.9
7.328e+38
1.3
2.863e+39
5.3
9
A1
160
160
160
160
1.376e+39
2.5
7.041e+38
1.3
2.080e+39
3.8
10
A2
177
177
177
177
6.088e+38
1.1
8.372e+38
1.5
1.446e+39
2.7
11
B1/B2
182
183
182
182
9.954e+37
0.2
1.369e+38
0.3
2.364e+38
0.4
12
B1/B2
184
184
184
184
3.875e+39
7.1
5.328e+39
9.8
9.203e+39
16.9
13
B1/B2
185
185
185
185
2.282e+37
0.0
3.138e+37
0.1
5.420e+37
0.1
14
A1
192
192
192
194
4.165e+38
0.8
2.905e+38
0.5
7.070e+38
1.3
15
B1/B2
196
196
197
196
16
A2
197
197
203
197
6.932e+38
1.3
9.531e+38
1.8
1.646e+39
3.0
17
A1
203
203
211
203
1.104e+39
2.0
7.143e+38
1.3
1.818e+39
3.3
18
A2
224
224
224
224
2.484e+39
4.6
3.416e+39
6.3
5.900e+39
10.9
19
B1/B2
225
226
225
225
2.955e+38
0.5
4.063e+38
0.7
7.018e+38
1.3
20
B1/B2
239
239
244
239
3.287e+38
0.6
4.520e+38
0.8
7.807e+38
1.4
21
A1
247
247
247
267
2.123e+39
3.9
6.828e+38
1.3
2.806e+39
5.2
22
B1/B2
267
267
269
271
5.732e+38
1.1
7.882e+38
1.5
1.361e+39
2.5
23
B1/B2
271
276
271
273
2.913e+39
5.4
4.006e+39
7.4
6.919e+39
12.7
24
B1/B2
283
283
285
283
25
B1/B2
285
286
286
285
4.727e+39
8.7
6.500e+39
12.0
1.123e+40
20.7
26
A2
286
287
287
286
4.605e+38
0.8
6.332e+38
1.2
1.094e+39
2.0
27
A1
287
293
293
292
5.919e+39
10.9
4.375e+39
8.1
1.029e+40
19.0
28
A1
293
311
293
311
1.450e+39
2.7
6.381e+38
1.2
2.088e+39
3.8
29
B1/B2
311
380
324
365
7.581e+35
0.0
1.042e+36
0.0
1.801e+36
0.0
30
B1/B2
382
382
426
382
1.430e+38
0.3
1.966e+38
0.4
3.396e+38
0.6
31
A1
692
692
692
692
7.552e+38
1.4
4.923e+38
0.9
1.247e+39
2.3
32
B1/B2
693
693
694
693
4.457e+37
0.1
6.128e+37
0.1
1.058e+38
0.2
33
A1
707
707
707
708
1.028e+39
1.9
7.031e+38
1.3
1.731e+39
3.2
34
A2
709
709
709
709
1.019e+39
1.9
1.401e+39
2.6
2.420e+39
4.5
35
B1/B2
712
713
712
712
6.969e+38
1.3
9.582e+38
1.8
1.655e+39
3.0
36
B1/B2
744
744
746
744
1.197e+39
2.2
1.646e+39
3.0
2.843e+39
5.2
37
B1/B2
832
835
832
832
1.848e+37
0.0
2.541e+37
0.0
4.388e+37
0.1
38
A1
844
844
844
852
1.814e+39
3.3
2.734e+38
0.5
2.087e+39
3.8
39
B1/B2
853
853
856
853
5.994e+35
0.0
8.242e+35
0.0
1.424e+36
0.0
40
A1
1094
1094
1094
1094
8.115e+39
14.9
8.624e+38
1.6
8.978e+39
16.5
41
B1/B2
1101
1101
1101
1101
6.565e+38
1.2
9.027e+38
1.7
1.559e+39
2.9
42
A1
1101
1101
1101
1101
5.430e+40
100.0
4.140e+36
0.0
5.431e+40
100.0
43
A1
1430
1430
1430
1439
1.407e+39
2.6
2.801e+37
0.1
1.435e+39
2.6
44
A2
1439
1439
1439
1445
3.154e+37
0.1
4.336e+37
0.1
7.490e+37
0.1
45
B1/B2
1457
1481
1457
1457
3.855e+38
0.7
5.300e+38
1.0
9.155e+38
1.7
46
A1
1481
1501
1481
1501
1.428e+39
2.6
2.499e+38
0.5
1.678e+39
3.1
47
B1/B2
1501
1536
1536
1532
4.577e+38
0.8
6.293e+38
1.2
1.087e+39
2.0
48
B1/B2
1536
1551
1606
1536
2.205e+39
4.1
3.032e+39
5.6
5.237e+39
9.6
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.
 

Single Crystal Raman spectra

Single crystal Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

The Raman measurements performed on single crystals employ polarized lasers and allow for the selection of specific elements of the individual Raman tensors of the Raman-active modes.

By convention, in the following we assume a measurement as X(XZ)Z, i.e. incident laser polarized along the X axis, emergent light polarized along the Z axis. If the crystal is aligned with the xyz reference frame, we sample the αxz element. As you rotate the crystal you can sample other entries of the Raman tensor or various linear combineations.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 


Choose the orientation of the crystal with respect to the reference system:

 
Rotation around X axis:
Rotation around Z axis:
Rotation around Y axis: