-    DIAMOND (4H)     -    C

 

 

Parameters of the Calculation 


All the calculations have been done using the ABINIT software. This is a list of the most representative parameteres used during the Raman calculation.


Number of electronic bands: 26
k-points  
   grid: 8 8 2 
   number of shifts: 
   shifts: 0 0 0.5 
Kinetic energy cut-off: 40 Ha  [=1088.464 eV ]
eXchange-Correlation functional: LDA pw90 

Pseudopotentials: 
C:  carbon, fhi98PP : Trouiller-Martins-type, LDA Ceperley/Alder Perdew/Wang (1992), l= 2 local  
 

Dielectric Properties 


We define:

  • The Born effective charges, also called dynamical charges, are tensors that correspond to the energy derivative with respect to atomic displacements and electric fields or, equivalently, to the change in atomic force due to an electric field: The sum of the Born effective charges of all nuclei in one cell must vanish, element by element, along each of the three directions of the space.
  • The dielectric tensors are the energy derivative with respect to two electric fields. They also relate the induced polarization to the external electric field.

Born effective charges (Z): 

C: -0.0162 0.0000 0.0000 
-0.0000 -0.0162 -0.0000 
0.0000 0.0000 -0.0014 
Eig. Value: -0.0162 -0.0162 -0.0014 
C: -0.0162 0.0000 -0.0000 
-0.0000 -0.0162 0.0000 
0.0000 0.0000 -0.0014 
Eig. Value: -0.0162 -0.0162 -0.0014 
C: 0.0162 -0.0000 -0.0000 
0.0000 0.0162 0.0000 
-0.0000 -0.0000 0.0014 
Eig. Value: 0.0162 0.0162 0.0014 
C: 0.0162 -0.0000 -0.0000 
0.0000 0.0162 0.0000 
-0.0000 -0.0000 0.0014 
Eig. Value: 0.0162 0.0162 0.0014 
C: -0.0162 0.0000 -0.0000 
-0.0000 -0.0162 0.0000 
0.0000 0.0000 -0.0014 
Eig. Value: -0.0162 -0.0162 -0.0014 
C: -0.0162 0.0000 0.0000 
0.0000 -0.0162 -0.0000 
0.0000 0.0000 -0.0014 
Eig. Value: -0.0162 -0.0162 -0.0014 
C: 0.0162 -0.0000 0.0000 
-0.0000 0.0162 -0.0000 
0.0000 -0.0000 0.0014 
Eig. Value: 0.0162 0.0162 0.0014 
C: 0.0162 -0.0000 0.0000 
0.0000 0.0162 -0.0000 
-0.0000 -0.0000 0.0014 
Eig. Value: 0.0162 0.0162 0.0014 
Atom type 

Dielectric tensors: 

 
Ɛ5.6656 0.0000 0.0000 
0.0000 5.6656 0.0000 
0.0000 0.0000 5.8168 
Eig. Value: 5.6656 5.6656 5.8168 
Refractive index (N): 2.3803 0.0000 0.0000 
0.0000 2.3803 0.0000 
0.0000 0.0000 2.4118 
Eig. Value: 2.3803 2.3803 2.4118 
Ɛ00.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
0.0000 0.0000 0.0000 
Eig. Value: 0.0000 0.0000 0.0000 
 

Powder Raman 

Powder Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

Choose the polarization of the lasers.

I ∥ 
I ⊥ 
I Total 
Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 

Data about the phonon modes

Frequency of the transverse (TO) and longitudinal (LO) phonon modes in the zone-center. The longitudinal modes are computed along the three cartesian directions. You can visualize the atomic displacement pattern corresponding to each phonon by clicking on the appropriate cell in the table below.

1
ac
0
0
0
0
2
ac
0
0
0
0
3
ac
0
0
0
0
4
E2u
397
397
397
397
5
E2u
397
397
397
397
6
E2g
416
416
416
416
6.053e+37
0.0
8.242e+37
0.0
1.429e+38
0.0
7
E2g
416
416
416
416
6.053e+37
0.0
4.620e+37
0.0
1.067e+38
0.0
8
E1g
545
545
545
545
1.714e+38
0.0
2.356e+38
0.0
4.070e+38
0.1
9
E1g
545
545
545
545
1.714e+38
0.0
2.356e+38
0.0
4.070e+38
0.1
10
B1g
711
711
711
711
11
B2u
721
721
721
721
12
A1g
1076
1076
1076
1076
2.807e+40
5.7
3.841e+39
0.8
3.191e+40
6.5
13
E1u
1232
1232
1232
1232
14
E1u
1232
1232
1232
1232
15
A2u
1269
1269
1269
1269
16
E2g
1269
1269
1269
1269
1.112e+41
22.7
1.015e+41
20.7
2.126e+41
43.4
17
E2g
1269
1269
1269
1269
1.112e+41
22.7
1.348e+41
27.5
2.460e+41
50.2
18
E2u
1282
1282
1282
1282
19
E2u
1282
1282
1282
1282
20
B2u
1311
1311
1311
1311
21
A1g
1316
1316
1316
1316
2.917e+41
59.6
1.981e+41
40.4
4.897e+41
100.0
22
E1g
1332
1332
1332
1332
6.303e+40
12.9
8.620e+40
17.6
1.492e+41
30.5
23
E1g
1332
1332
1332
1332
6.303e+40
12.9
8.713e+40
17.8
1.502e+41
30.7
24
B1g
1340
1340
1340
1340
No.  Char.  ω TO  ω LOx  ω LOy  ω LOz  I ∥  I ⊥  I Total 

You can define the size of the supercell for the visualization of the vibration.

Nx: 
Ny: 
Nz: 
Normalized
Raw
Options for intensity.
 

Single Crystal Raman spectra

Single crystal Raman spectrum

The intensity of the Raman peaks is computed within the density-functional perturbation theory. The intensity depends on the temperature (for now fixed at 300K), frequency of the input laser (for now fixed at 21834 cm-1, frequency of the phonon mode and the Raman tensor. The Raman tensor represents the derivative of the dielectric tensor during the atomic displacement that corresponds to the phonon vibration. The Raman tensor is related to the polarizability of a specific phonon mode.

The Raman measurements performed on single crystals employ polarized lasers and allow for the selection of specific elements of the individual Raman tensors of the Raman-active modes.

By convention, in the following we assume a measurement as X(XZ)Z, i.e. incident laser polarized along the X axis, emergent light polarized along the Z axis. If the crystal is aligned with the xyz reference frame, we sample the αxz element. As you rotate the crystal you can sample other entries of the Raman tensor or various linear combineations.

Horizontal:
Xmin:
Xmax:
Vertical:
Ymin:
Ymax:
 


Choose the orientation of the crystal with respect to the reference system:

 
Rotation around X axis:
Rotation around Z axis:
Rotation around Y axis: